Sort by:
Page 415 of 4524519 results

Transformer model based on Sonazoid contrast-enhanced ultrasound for microvascular invasion prediction in hepatocellular carcinoma.

Qin Q, Pang J, Li J, Gao R, Wen R, Wu Y, Liang L, Que Q, Liu C, Peng J, Lv Y, He Y, Lin P, Yang H

pubmed logopapersMay 19 2025
Microvascular invasion (MVI) is strongly associated with the prognosis of patients with hepatocellular carcinoma (HCC). To evaluate the value of Transformer models with Sonazoid contrast-enhanced ultrasound (CEUS) in the preoperative prediction of MVI. This retrospective study included 164 HCC patients. Deep learning features and radiomic features were extracted from arterial and Kupffer phase images, alongside the collection of clinicopathological parameters. Normality was assessed using the Shapiro-Wilk test. The Mann‒Whitney U-test and least absolute shrinkage and selection operator algorithm were applied to screen features. Transformer, radiomic, and clinical prediction models for MVI were constructed with logistic regression. Repeated random splits followed a 7:3 ratio, with model performance evaluated over 50 iterations. The area under the receiver operating characteristic curve (AUC, 95% confidence interval [CI]), sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), decision curve, and calibration curve were used to evaluate the performance of the models. The DeLong test was applied to compare performance between models. The Bonferroni method was used to control type I error rates arising from multiple comparisons. A two-sided p-value of < 0.05 was considered statistically significant. In the training set, the diagnostic performance of the arterial-phase Transformer (AT) and Kupffer-phase Transformer (KT) models were better than that of the radiomic and clinical (Clin) models (p < 0.0001). In the validation set, both the AT and KT models outperformed the radiomic and Clin models in terms of diagnostic performance (p < 0.05). The AUC (95% CI) for the AT model was 0.821 (0.72-0.925) with an accuracy of 80.0%, and the KT model was 0.859 (0.766-0.977) with an accuracy of 70.0%. Logistic regression analysis indicated that tumor size (p = 0.016) and alpha-fetoprotein (AFP) (p = 0.046) were independent predictors of MVI. Transformer models using Sonazoid CEUS have potential for effectively identifying MVI-positive patients preoperatively.

Improving Deep Learning-Based Grading of Partial-thickness Supraspinatus Tendon Tears with Guided Diffusion Augmentation.

Ni M, Jiesisibieke D, Zhao Y, Wang Q, Gao L, Tian C, Yuan H

pubmed logopapersMay 19 2025
To develop and validate a deep learning system with guided diffusion-based data augmentation for grading partial-thickness supraspinatus tendon (SST) tears and to compare its performance with experienced radiologists, including external validation. This retrospective study included 1150 patients with arthroscopically confirmed SST tears, divided into a training set (741 patients), validation set (185 patients), and internal test set (185 patients). An independent external test set of 224 patients was used for generalizability assessment. To address data imbalance, MRI images were augmented using a guided diffusion model. A ResNet-34 model was employed for Ellman grading of bursal-sided and articular-sided partial-thickness tears across different MRI sequences (oblique coronal [OCOR], oblique sagittal [OSAG], and combined OCOR+OSAG). Performance was evaluated using AUC and precision-recall curves, and compared to three experienced musculoskeletal (MSK) radiologists. The DeLong test was used to compare performance across different sequence combinations. A total of 26,020 OCOR images and 26,356 OSAG images were generated using the guided diffusion model. For bursal-sided partial-thickness tears in the internal dataset, the model achieved AUCs of 0.99, 0.98, and 0.97 for OCOR, OSAG, and combined sequences, respectively, while for articular-sided tears, AUCs were 0.99, 0.99, and 0.99. The DeLong test showed no significant differences among sequence combinations (P=0.17, 0.14, 0.07). In the external dataset, the combined-sequence model achieved AUCs of 0.99, 0.97, and 0.97 for bursal-sided tears and 0.99, 0.95, and 0.95 for articular-sided tears. Radiologists demonstrated an ICC of 0.99, but their grading performance was significantly lower than the ResNet-34 model (P<0.001). The deep learning system improved grading consistency and significantly reduced evaluation time, while guided diffusion augmentation enhanced model robustness. The proposed deep learning system provides a reliable and efficient method for grading partial-thickness SST tears, achieving radiologist-level accuracy with greater consistency and faster evaluation speed.

Functional MRI Analysis of Cortical Regions to Distinguish Lewy Body Dementia From Alzheimer's Disease.

Kashyap B, Hanson LR, Gustafson SK, Sherman SJ, Sughrue ME, Rosenbloom MH

pubmed logopapersMay 19 2025
Cortical regions such as parietal area H (PH) and the fundus of the superior temporal sulcus (FST) are involved in higher visual function and may play a role in dementia with Lewy bodies (DLB), which is frequently associated with hallucinations. The authors evaluated functional connectivity between these two regions for distinguishing participants with DLB from those with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and from cognitively normal (CN) individuals to identify a functional connectivity MRI signature for DLB. Eighteen DLB participants completed cognitive testing and functional MRI scans and were matched to AD or MCI and CN individuals whose data were obtained from the Alzheimer's Disease Neuroimaging Initiative database (https://adni.loni.usc.edu). Images were analyzed with data from Human Connectome Project (HCP) comparison individuals by using a machine learning-based subject-specific HCP atlas based on diffusion tractography. Bihemispheric functional connectivity of the PH to left FST regions was reduced in the DLB group compared with the AD and CN groups (mean±SD connectivity score=0.307±0.009 vs. 0.456±0.006 and 0.433±0.006, respectively). No significant differences were detected among the groups in connectivity within basal ganglia structures, and no significant correlations were observed between neuropsychological testing results and functional connectivity between the PH and FST regions. Performances on clock-drawing and number-cancelation tests were significantly and negatively correlated with connectivity between the right caudate nucleus and right substantia nigra for DLB participants but not for AD or CN participants. The functional connectivity between PH and FST regions is uniquely affected by DLB and may help distinguish this condition from AD.

Segmentation of temporomandibular joint structures on mri images using neural networks for diagnosis of pathologies

Maksim I. Ivanov, Olga E. Mendybaeva, Yuri E. Karyakin, Igor N. Glukhikh, Aleksey V. Lebedev

arxiv logopreprintMay 19 2025
This article explores the use of artificial intelligence for the diagnosis of pathologies of the temporomandibular joint (TMJ), in particular, for the segmentation of the articular disc on MRI images. The relevance of the work is due to the high prevalence of TMJ pathologies, as well as the need to improve the accuracy and speed of diagnosis in medical institutions. During the study, the existing solutions (Diagnocat, MandSeg) were analyzed, which, as a result, are not suitable for studying the articular disc due to the orientation towards bone structures. To solve the problem, an original dataset was collected from 94 images with the classes "temporomandibular joint" and "jaw". To increase the amount of data, augmentation methods were used. After that, the models of U-Net, YOLOv8n, YOLOv11n and Roboflow neural networks were trained and compared. The evaluation was carried out according to the Dice Score, Precision, Sensitivity, Specificity, and Mean Average Precision metrics. The results confirm the potential of using the Roboflow model for segmentation of the temporomandibular joint. In the future, it is planned to develop an algorithm for measuring the distance between the jaws and determining the position of the articular disc, which will improve the diagnosis of TMJ pathologies.

Current trends and emerging themes in utilizing artificial intelligence to enhance anatomical diagnostic accuracy and efficiency in radiotherapy.

Pezzino S, Luca T, Castorina M, Puleo S, Castorina S

pubmed logopapersMay 19 2025
Artificial intelligence (AI) incorporation into healthcare has proven revolutionary, especially in radiotherapy, where accuracy is critical. The purpose of the study is to present patterns and develop topics in the application of AI to improve the precision of anatomical diagnosis, delineation of organs, and therapeutic effectiveness in radiation and radiological imaging. We performed a bibliometric analysis of scholarly articles in the fields starting in 2014. Through an examination of research output from key contributing nations and institutions, an analysis of notable research subjects, and an investigation of trends in scientific terminology pertaining to AI in radiology and radiotherapy. Furthermore, we examined software solutions based on AI in these domains, with a specific emphasis on extracting anatomical features and recognizing organs for the purpose of treatment planning. Our investigation found a significant surge in papers pertaining to AI in the fields since 2014. Institutions such as Emory University and Memorial Sloan-Kettering Cancer Center made substantial contributions to the development of the United States and China as leading research-producing nations. Key study areas encompassed adaptive radiation informed by anatomical alterations, MR-Linac for enhanced vision of soft tissues, and multi-organ segmentation for accurate planning of radiotherapy. An evident increase in the frequency of phrases such as 'radiomics,' 'radiotherapy segmentation,' and 'dosiomics' was noted. The evaluation of AI-based software revealed a wide range of uses in several subdisciplinary fields of radiation and radiology, particularly in improving the identification of anatomical features for treatment planning and identifying organs at risk. The incorporation of AI in anatomical diagnosis in radiological imaging and radiotherapy is progressing rapidly, with substantial capacity to transform the precision of diagnoses and the effectiveness of treatment planning.

Effect of low-dose colchicine on pericoronary inflammation and coronary plaque composition in chronic coronary disease: a subanalysis of the LoDoCo2 trial.

Fiolet ATL, Lin A, Kwiecinski J, Tutein Nolthenius J, McElhinney P, Grodecki K, Kietselaer B, Opstal TS, Cornel JH, Knol RJ, Schaap J, Aarts RAHM, Tutein Nolthenius AMFA, Nidorf SM, Velthuis BK, Dey D, Mosterd A

pubmed logopapersMay 19 2025
Low-dose colchicine (0.5 mg once daily) reduces the risk of major cardiovascular events in coronary disease, but its mechanism of action is not yet fully understood. We investigated whether low-dose colchicine is associated with changes in pericoronary inflammation and plaque composition in patients with chronic coronary disease. We performed a cross-sectional, nationwide, subanalysis of the Low-Dose Colchicine 2 Trial (LoDoCo2, n=5522). CT angiography studies were performed in 151 participants randomised to colchicine or placebo coronary after a median treatment duration of 28.2 months. Pericoronary adipose tissue (PCAT) attenuation measurements around proximal coronary artery segments and quantitative plaque analysis for the entire coronary tree were performed using artificial intelligence-enabled plaque analysis software. Median PCAT attenuation was not significantly different between the two groups (-79.5 Hounsfield units (HU) for colchicine versus -78.7 HU for placebo, p=0.236). Participants assigned to colchicine had a higher volume (169.6 mm<sup>3</sup> vs 113.1 mm<sup>3</sup>, p=0.041) and burden (9.6% vs 7.0%, p=0.035) of calcified plaque, and higher volume of dense calcified plaque (192.8 mm<sup>3</sup> vs 144.3 mm<sup>3</sup>, p=0.048) compared with placebo, independent of statin therapy. Colchicine treatment was associated with a lower burden of low-attenuation plaque in participants on a low-intensity statin, but not in those on a high-intensity statin (p<sub>interaction</sub>=0.037). Pericoronary inflammation did not differ among participants who received low-dose colchicine compared with placebo. Low-dose colchicine was associated with a higher volume of calcified plaque, particularly dense calcified plaque, which is considered a feature of plaque stability.

GuidedMorph: Two-Stage Deformable Registration for Breast MRI

Yaqian Chen, Hanxue Gu, Haoyu Dong, Qihang Li, Yuwen Chen, Nicholas Konz, Lin Li, Maciej A. Mazurowski

arxiv logopreprintMay 19 2025
Accurately registering breast MR images from different time points enables the alignment of anatomical structures and tracking of tumor progression, supporting more effective breast cancer detection, diagnosis, and treatment planning. However, the complexity of dense tissue and its highly non-rigid nature pose challenges for conventional registration methods, which primarily focus on aligning general structures while overlooking intricate internal details. To address this, we propose \textbf{GuidedMorph}, a novel two-stage registration framework designed to better align dense tissue. In addition to a single-scale network for global structure alignment, we introduce a framework that utilizes dense tissue information to track breast movement. The learned transformation fields are fused by introducing the Dual Spatial Transformer Network (DSTN), improving overall alignment accuracy. A novel warping method based on the Euclidean distance transform (EDT) is also proposed to accurately warp the registered dense tissue and breast masks, preserving fine structural details during deformation. The framework supports paradigms that require external segmentation models and with image data only. It also operates effectively with the VoxelMorph and TransMorph backbones, offering a versatile solution for breast registration. We validate our method on ISPY2 and internal dataset, demonstrating superior performance in dense tissue, overall breast alignment, and breast structural similarity index measure (SSIM), with notable improvements by over 13.01% in dense tissue Dice, 3.13% in breast Dice, and 1.21% in breast SSIM compared to the best learning-based baseline.

OpenPros: A Large-Scale Dataset for Limited View Prostate Ultrasound Computed Tomography

Hanchen Wang, Yixuan Wu, Yinan Feng, Peng Jin, Shihang Feng, Yiming Mao, James Wiskin, Baris Turkbey, Peter A. Pinto, Bradford J. Wood, Songting Luo, Yinpeng Chen, Emad Boctor, Youzuo Lin

arxiv logopreprintMay 18 2025
Prostate cancer is one of the most common and lethal cancers among men, making its early detection critically important. Although ultrasound imaging offers greater accessibility and cost-effectiveness compared to MRI, traditional transrectal ultrasound methods suffer from low sensitivity, especially in detecting anteriorly located tumors. Ultrasound computed tomography provides quantitative tissue characterization, but its clinical implementation faces significant challenges, particularly under anatomically constrained limited-angle acquisition conditions specific to prostate imaging. To address these unmet needs, we introduce OpenPros, the first large-scale benchmark dataset explicitly developed for limited-view prostate USCT. Our dataset includes over 280,000 paired samples of realistic 2D speed-of-sound (SOS) phantoms and corresponding ultrasound full-waveform data, generated from anatomically accurate 3D digital prostate models derived from real clinical MRI/CT scans and ex vivo ultrasound measurements, annotated by medical experts. Simulations are conducted under clinically realistic configurations using advanced finite-difference time-domain and Runge-Kutta acoustic wave solvers, both provided as open-source components. Through comprehensive baseline experiments, we demonstrate that state-of-the-art deep learning methods surpass traditional physics-based approaches in both inference efficiency and reconstruction accuracy. Nevertheless, current deep learning models still fall short of delivering clinically acceptable high-resolution images with sufficient accuracy. By publicly releasing OpenPros, we aim to encourage the development of advanced machine learning algorithms capable of bridging this performance gap and producing clinically usable, high-resolution, and highly accurate prostate ultrasound images. The dataset is publicly accessible at https://open-pros.github.io/.

ChatGPT-4-Driven Liver Ultrasound Radiomics Analysis: Advantages and Drawbacks Compared to Traditional Techniques.

Sultan L, Venkatakrishna SSB, Anupindi S, Andronikou S, Acord M, Otero H, Darge K, Sehgal C, Holmes J

pubmed logopapersMay 18 2025
Artificial intelligence (AI) is transforming medical imaging, with large language models such as ChatGPT-4 emerging as potential tools for automated image interpretation. While AI-driven radiomics has shown promise in diagnostic imaging, the efficacy of ChatGPT-4 in liver ultrasound analysis remains largely unexamined. This study evaluates the capability of ChatGPT-4 in liver ultrasound radiomics, specifically its ability to differentiate fibrosis, steatosis, and normal liver tissue, compared to conventional image analysis software. Seventy grayscale ultrasound images from a preclinical liver disease model, including fibrosis (n=31), fatty liver (n=18), and normal liver (n=21), were analyzed. ChatGPT-4 extracted texture features, which were compared to those obtained using Interactive Data Language (IDL), a traditional image analysis software. One-way ANOVA was used to identify statistically significant features differentiating liver conditions, and logistic regression models were employed to assess diagnostic performance. ChatGPT-4 extracted nine key textural features-echo intensity, heterogeneity, skewness, kurtosis, contrast, homogeneity, dissimilarity, angular second moment, and entropy-all of which significantly differed across liver conditions (p < 0.05). Among individual features, echo intensity achieved the highest F1-score (0.85). When combined, ChatGPT-4 attained 76% accuracy and 83% sensitivity in classifying liver disease. ROC analysis demonstrated strong discriminatory performance, with AUC values of 0.75 for fibrosis, 0.87 for normal liver, and 0.97 for steatosis. Compared to Interactive Data Language (IDL) image analysis software, ChatGPT-4 exhibited slightly lower sensitivity (0.83 vs. 0.89) but showed moderate correlation (R = 0.68, p < 0.0001) with IDL-derived features. However, it significantly outperformed IDL in processing efficiency, reducing analysis time by 40%, highlighting its potential for high throughput radiomic analysis. Despite slightly lower sensitivity than IDL, ChatGPT-4 demonstrated high feasibility for ultrasound radiomics, offering faster processing, high-throughput analysis, and automated multi-image evaluation. These findings support its potential integration into AI-driven imaging workflows, with further refinements needed to enhance feature reproducibility and diagnostic accuracy.

Mutual Evidential Deep Learning for Medical Image Segmentation

Yuanpeng He, Yali Bi, Lijian Li, Chi-Man Pun, Wenpin Jiao, Zhi Jin

arxiv logopreprintMay 18 2025
Existing semi-supervised medical segmentation co-learning frameworks have realized that model performance can be diminished by the biases in model recognition caused by low-quality pseudo-labels. Due to the averaging nature of their pseudo-label integration strategy, they fail to explore the reliability of pseudo-labels from different sources. In this paper, we propose a mutual evidential deep learning (MEDL) framework that offers a potentially viable solution for pseudo-label generation in semi-supervised learning from two perspectives. First, we introduce networks with different architectures to generate complementary evidence for unlabeled samples and adopt an improved class-aware evidential fusion to guide the confident synthesis of evidential predictions sourced from diverse architectural networks. Second, utilizing the uncertainty in the fused evidence, we design an asymptotic Fisher information-based evidential learning strategy. This strategy enables the model to initially focus on unlabeled samples with more reliable pseudo-labels, gradually shifting attention to samples with lower-quality pseudo-labels while avoiding over-penalization of mislabeled classes in high data uncertainty samples. Additionally, for labeled data, we continue to adopt an uncertainty-driven asymptotic learning strategy, gradually guiding the model to focus on challenging voxels. Extensive experiments on five mainstream datasets have demonstrated that MEDL achieves state-of-the-art performance.
Page 415 of 4524519 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.