Functional MRI Analysis of Cortical Regions to Distinguish Lewy Body Dementia From Alzheimer's Disease.
Authors
Affiliations (1)
Affiliations (1)
- HealthPartners Institute, Bloomington, Minn. (Kashyap, Hanson, Gustafson, Sherman); HealthPartners Center for Memory and Aging, St. Paul, Minn. (Kashyap, Hanson, Sherman); Omniscient Neurotechnology, Atlanta (Sughrue); Department of Neurology, Center for Memory and Brain Wellness, University of Washington, Seattle (Rosenbloom).
Abstract
Cortical regions such as parietal area H (PH) and the fundus of the superior temporal sulcus (FST) are involved in higher visual function and may play a role in dementia with Lewy bodies (DLB), which is frequently associated with hallucinations. The authors evaluated functional connectivity between these two regions for distinguishing participants with DLB from those with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and from cognitively normal (CN) individuals to identify a functional connectivity MRI signature for DLB. Eighteen DLB participants completed cognitive testing and functional MRI scans and were matched to AD or MCI and CN individuals whose data were obtained from the Alzheimer's Disease Neuroimaging Initiative database (https://adni.loni.usc.edu). Images were analyzed with data from Human Connectome Project (HCP) comparison individuals by using a machine learning-based subject-specific HCP atlas based on diffusion tractography. Bihemispheric functional connectivity of the PH to left FST regions was reduced in the DLB group compared with the AD and CN groups (mean±SD connectivity score=0.307±0.009 vs. 0.456±0.006 and 0.433±0.006, respectively). No significant differences were detected among the groups in connectivity within basal ganglia structures, and no significant correlations were observed between neuropsychological testing results and functional connectivity between the PH and FST regions. Performances on clock-drawing and number-cancelation tests were significantly and negatively correlated with connectivity between the right caudate nucleus and right substantia nigra for DLB participants but not for AD or CN participants. The functional connectivity between PH and FST regions is uniquely affected by DLB and may help distinguish this condition from AD.