Improving Deep Learning-Based Grading of Partial-thickness Supraspinatus Tendon Tears with Guided Diffusion Augmentation.

Authors

Ni M,Jiesisibieke D,Zhao Y,Wang Q,Gao L,Tian C,Yuan H

Affiliations (2)

  • Department of Radiology, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, China.
  • Department of Radiology, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, China. Electronic address: [email protected].

Abstract

To develop and validate a deep learning system with guided diffusion-based data augmentation for grading partial-thickness supraspinatus tendon (SST) tears and to compare its performance with experienced radiologists, including external validation. This retrospective study included 1150 patients with arthroscopically confirmed SST tears, divided into a training set (741 patients), validation set (185 patients), and internal test set (185 patients). An independent external test set of 224 patients was used for generalizability assessment. To address data imbalance, MRI images were augmented using a guided diffusion model. A ResNet-34 model was employed for Ellman grading of bursal-sided and articular-sided partial-thickness tears across different MRI sequences (oblique coronal [OCOR], oblique sagittal [OSAG], and combined OCOR+OSAG). Performance was evaluated using AUC and precision-recall curves, and compared to three experienced musculoskeletal (MSK) radiologists. The DeLong test was used to compare performance across different sequence combinations. A total of 26,020 OCOR images and 26,356 OSAG images were generated using the guided diffusion model. For bursal-sided partial-thickness tears in the internal dataset, the model achieved AUCs of 0.99, 0.98, and 0.97 for OCOR, OSAG, and combined sequences, respectively, while for articular-sided tears, AUCs were 0.99, 0.99, and 0.99. The DeLong test showed no significant differences among sequence combinations (P=0.17, 0.14, 0.07). In the external dataset, the combined-sequence model achieved AUCs of 0.99, 0.97, and 0.97 for bursal-sided tears and 0.99, 0.95, and 0.95 for articular-sided tears. Radiologists demonstrated an ICC of 0.99, but their grading performance was significantly lower than the ResNet-34 model (P<0.001). The deep learning system improved grading consistency and significantly reduced evaluation time, while guided diffusion augmentation enhanced model robustness. The proposed deep learning system provides a reliable and efficient method for grading partial-thickness SST tears, achieving radiologist-level accuracy with greater consistency and faster evaluation speed.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.