Transformer model based on Sonazoid contrast-enhanced ultrasound for microvascular invasion prediction in hepatocellular carcinoma.
Authors
Affiliations (4)
Affiliations (4)
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical, University, Nanning, Guangxi, China.
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, China.
Abstract
Microvascular invasion (MVI) is strongly associated with the prognosis of patients with hepatocellular carcinoma (HCC). To evaluate the value of Transformer models with Sonazoid contrast-enhanced ultrasound (CEUS) in the preoperative prediction of MVI. This retrospective study included 164 HCC patients. Deep learning features and radiomic features were extracted from arterial and Kupffer phase images, alongside the collection of clinicopathological parameters. Normality was assessed using the Shapiro-Wilk test. The Mann‒Whitney U-test and least absolute shrinkage and selection operator algorithm were applied to screen features. Transformer, radiomic, and clinical prediction models for MVI were constructed with logistic regression. Repeated random splits followed a 7:3 ratio, with model performance evaluated over 50 iterations. The area under the receiver operating characteristic curve (AUC, 95% confidence interval [CI]), sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), decision curve, and calibration curve were used to evaluate the performance of the models. The DeLong test was applied to compare performance between models. The Bonferroni method was used to control type I error rates arising from multiple comparisons. A two-sided p-value of < 0.05 was considered statistically significant. In the training set, the diagnostic performance of the arterial-phase Transformer (AT) and Kupffer-phase Transformer (KT) models were better than that of the radiomic and clinical (Clin) models (p < 0.0001). In the validation set, both the AT and KT models outperformed the radiomic and Clin models in terms of diagnostic performance (p < 0.05). The AUC (95% CI) for the AT model was 0.821 (0.72-0.925) with an accuracy of 80.0%, and the KT model was 0.859 (0.766-0.977) with an accuracy of 70.0%. Logistic regression analysis indicated that tumor size (p = 0.016) and alpha-fetoprotein (AFP) (p = 0.046) were independent predictors of MVI. Transformer models using Sonazoid CEUS have potential for effectively identifying MVI-positive patients preoperatively.