Sort by:
Page 40 of 92915 results

Quantification of Optical Coherence Tomography Features in >3500 Patients with Inherited Retinal Disease Reveals Novel Genotype-Phenotype Associations

Woof, W. A., de Guimaraes, T. A. C., Al-Khuzaei, S., Daich Varela, M., Shah, M., Naik, G., Sen, S., Bagga, P., Chan, Y. W., Mendes, B. S., Lin, S., Ghoshal, B., Liefers, B., Fu, D. J., Georgiou, M., da Silva, A. S., Nguyen, Q., Liu, Y., Fujinami-Yokokawa, Y., Sumodhee, D., Furman, J., Patel, P. J., Moghul, I., Moosajee, M., Sallum, J., De Silva, S. R., Lorenz, B., Herrmann, P., Holz, F. G., Fujinami, K., Webster, A. R., Mahroo, O. A., Downes, S. M., Madhusudhan, S., Balaskas, K., Michaelides, M., Pontikos, N.

medrxiv logopreprintJul 3 2025
PurposeTo quantify spectral-domain optical coherence tomography (SD-OCT) images cross-sectionally and longitudinally in a large cohort of molecularly characterized patients with inherited retinal disease (IRDs) from the UK. DesignRetrospective study of imaging data. ParticipantsPatients with a clinical and molecularly confirmed diagnosis of IRD who have undergone macular SD-OCT imaging at Moorfields Eye Hospital (MEH) between 2011 and 2019. We retrospectively identified 4,240 IRD patients from the MEH database (198 distinct IRD genes), including 69,664 SD-OCT macular volumes. MethodsEight features of interest were defined: retina, fovea, intraretinal cystic spaces (ICS), subretinal fluid (SRF), subretinal hyper-reflective material (SHRM), pigment epithelium detachment (PED), ellipsoid zone loss (EZ-loss) and retinal pigment epithelium loss (RPE-loss). Manual annotations of five b-scans per SD-OCT volume was performed for the retinal features by four graders based on a defined grading protocol. A total of 1,749 b-scans from 360 SD-OCT volumes across 275 patients were annotated for the eight retinal features for training and testing of a neural-network-based segmentation model, AIRDetect-OCT, which was then applied to the entire imaging dataset. Main Outcome MeasuresPerformance of AIRDetect-OCT, comparing to inter-grader agreement was evaluated using Dice score on a held-out dataset. Feature prevalence, volume and area were analysed cross-sectionally and longitudinally. ResultsThe inter-grader Dice score for manual segmentation was [&ge;]90% for retina, ICS, SRF, SHRM and PED, >77% for both EZ-loss and RPE-loss. Model-grader agreement was >80% for segmentation of retina, ICS, SRF, SHRM, and PED, and >68% for both EZ-loss and RPE-loss. Automatic segmentation was applied to 272,168 b-scans across 7,405 SD-OCT volumes from 3,534 patients encompassing 176 unique genes. Accounting for age, male patients exhibited significantly more EZ-loss (19.6mm2 vs 17.9mm2, p<2.8x10-4) and RPE-loss (7.79mm2 vs 6.15mm2, p<3.2x10-6) than females. RPE-loss was significantly higher in Asian patients than other ethnicities (9.37mm2 vs 7.29mm2, p<0.03). ICS average total volume was largest in RS1 (0.47mm3) and NR2E3 (0.25mm3), SRF in BEST1 (0.21mm3) and PED in EFEMP1 (0.34mm3). BEST1 and PROM1 showed significantly different patterns of EZ-loss (p<10-4) and RPE-loss (p<0.02) comparing the dominant to the recessive forms. Sectoral analysis revealed significantly increased EZ-loss in the inferior quadrant compared to superior quadrant for RHO ({Delta}=-0.414 mm2, p=0.036) and EYS ({Delta}=-0.908 mm2, p=1.5x10-4). In ABCA4 retinopathy, more severe genotypes (group A) were associated with faster progression of EZ-loss (2.80{+/-}0.62 mm2/yr), whilst the p.(Gly1961Glu) variant (group D) was associated with slower progression (0.56 {+/-}0.18 mm2/yr). There were also sex differences within groups with males in group A experiencing significantly faster rates of progression of RPE-loss (2.48 {+/-}1.40 mm2/yr vs 0.87 {+/-}0.62 mm2/yr, p=0.047), but lower rates in groups B, C, and D. ConclusionsAIRDetect-OCT, a novel deep learning algorithm, enables large-scale OCT feature quantification in IRD patients uncovering cross-sectional and longitudinal phenotype correlations with demographic and genotypic parameters.

MvHo-IB: Multi-View Higher-Order Information Bottleneck for Brain Disorder Diagnosis

Kunyu Zhang, Qiang Li, Shujian Yu

arxiv logopreprintJul 3 2025
Recent evidence suggests that modeling higher-order interactions (HOIs) in functional magnetic resonance imaging (fMRI) data can enhance the diagnostic accuracy of machine learning systems. However, effectively extracting and utilizing HOIs remains a significant challenge. In this work, we propose MvHo-IB, a novel multi-view learning framework that integrates both pairwise interactions and HOIs for diagnostic decision-making, while automatically compressing task-irrelevant redundant information. MvHo-IB introduces several key innovations: (1) a principled method that combines O-information from information theory with a matrix-based Renyi alpha-order entropy estimator to quantify and extract HOIs, (2) a purpose-built Brain3DCNN encoder to effectively utilize these interactions, and (3) a new multi-view learning information bottleneck objective to enhance representation learning. Experiments on three benchmark fMRI datasets demonstrate that MvHo-IB achieves state-of-the-art performance, significantly outperforming previous methods, including recent hypergraph-based techniques. The implementation of MvHo-IB is available at https://github.com/zky04/MvHo-IB.

MedFormer: Hierarchical Medical Vision Transformer with Content-Aware Dual Sparse Selection Attention

Zunhui Xia, Hongxing Li, Libin Lan

arxiv logopreprintJul 3 2025
Medical image recognition serves as a key way to aid in clinical diagnosis, enabling more accurate and timely identification of diseases and abnormalities. Vision transformer-based approaches have proven effective in handling various medical recognition tasks. However, these methods encounter two primary challenges. First, they are often task-specific and architecture-tailored, limiting their general applicability. Second, they usually either adopt full attention to model long-range dependencies, resulting in high computational costs, or rely on handcrafted sparse attention, potentially leading to suboptimal performance. To tackle these issues, we present MedFormer, an efficient medical vision transformer with two key ideas. First, it employs a pyramid scaling structure as a versatile backbone for various medical image recognition tasks, including image classification and dense prediction tasks such as semantic segmentation and lesion detection. This structure facilitates hierarchical feature representation while reducing the computation load of feature maps, highly beneficial for boosting performance. Second, it introduces a novel Dual Sparse Selection Attention (DSSA) with content awareness to improve computational efficiency and robustness against noise while maintaining high performance. As the core building technique of MedFormer, DSSA is explicitly designed to attend to the most relevant content. In addition, a detailed theoretical analysis has been conducted, demonstrating that MedFormer has superior generality and efficiency in comparison to existing medical vision transformers. Extensive experiments on a variety of imaging modality datasets consistently show that MedFormer is highly effective in enhancing performance across all three above-mentioned medical image recognition tasks. The code is available at https://github.com/XiaZunhui/MedFormer.

Outcome prediction and individualized treatment effect estimation in patients with large vessel occlusion stroke

Lisa Herzog, Pascal Bühler, Ezequiel de la Rosa, Beate Sick, Susanne Wegener

arxiv logopreprintJul 3 2025
Mechanical thrombectomy has become the standard of care in patients with stroke due to large vessel occlusion (LVO). However, only 50% of successfully treated patients show a favorable outcome. We developed and evaluated interpretable deep learning models to predict functional outcomes in terms of the modified Rankin Scale score alongside individualized treatment effects (ITEs) using data of 449 LVO stroke patients from a randomized clinical trial. Besides clinical variables, we considered non-contrast CT (NCCT) and angiography (CTA) scans which were integrated using novel foundation models to make use of advanced imaging information. Clinical variables had a good predictive power for binary functional outcome prediction (AUC of 0.719 [0.666, 0.774]) which could slightly be improved when adding CTA imaging (AUC of 0.737 [0.687, 0.795]). Adding NCCT scans or a combination of NCCT and CTA scans to clinical features yielded no improvement. The most important clinical predictor for functional outcome was pre-stroke disability. While estimated ITEs were well calibrated to the average treatment effect, discriminatory ability was limited indicated by a C-for-Benefit statistic of around 0.55 in all models. In summary, the models allowed us to jointly integrate CT imaging and clinical features while achieving state-of-the-art prediction performance and ITE estimates. Yet, further research is needed to particularly improve ITE estimation.

PiCME: Pipeline for Contrastive Modality Evaluation and Encoding in the MIMIC Dataset

Michal Golovanevsky, Pranav Mahableshwarkar, Carsten Eickhoff, Ritambhara Singh

arxiv logopreprintJul 3 2025
Multimodal deep learning holds promise for improving clinical prediction by integrating diverse patient data, including text, imaging, time-series, and structured demographics. Contrastive learning facilitates this integration by producing a unified representation that can be reused across tasks, reducing the need for separate models or encoders. Although contrastive learning has seen success in vision-language domains, its use in clinical settings remains largely limited to image and text pairs. We propose the Pipeline for Contrastive Modality Evaluation and Encoding (PiCME), which systematically assesses five clinical data types from MIMIC: discharge summaries, radiology reports, chest X-rays, demographics, and time-series. We pre-train contrastive models on all 26 combinations of two to five modalities and evaluate their utility on in-hospital mortality and phenotype prediction. To address performance plateaus with more modalities, we introduce a Modality-Gated LSTM that weights each modality according to its contrastively learned importance. Our results show that contrastive models remain competitive with supervised baselines, particularly in three-modality settings. Performance declines beyond three modalities, which supervised models fail to recover. The Modality-Gated LSTM mitigates this drop, improving AUROC from 73.19% to 76.93% and AUPRC from 51.27% to 62.26% in the five-modality setting. We also compare contrastively learned modality importance scores with attribution scores and evaluate generalization across demographic subgroups, highlighting strengths in interpretability and fairness. PiCME is the first to scale contrastive learning across all modality combinations in MIMIC, offering guidance for modality selection, training strategies, and equitable clinical prediction.

Multi-scale fusion semantic enhancement network for medical image segmentation.

Zhang Z, Xu C, Li Z, Chen Y, Nie C

pubmed logopapersJul 2 2025
The application of sophisticated computer vision techniques for medical image segmentation (MIS) plays a vital role in clinical diagnosis and treatment. Although Transformer-based models are effective at capturing global context, they are often ineffective at dealing with local feature dependencies. In order to improve this problem, we design a Multi-scale Fusion and Semantic Enhancement Network (MFSE-Net) for endoscopic image segmentation, which aims to capture global information and enhance detailed information. MFSE-Net uses a dual encoder architecture, with PVTv2 as the primary encoder to capture global features and CNNs as the secondary encoder to capture local details. The main encoder includes the LGDA (Large-kernel Grouped Deformable Attention) module for filtering noise and enhancing the semantic extraction of the four hierarchical features. The auxiliary encoder leverages the MLCF (Multi-Layered Cross-attention Fusion) module to integrate high-level semantic data from the deep CNN with fine spatial details from the shallow layers, enhancing the precision of boundaries and positioning. On the decoder side, we have introduced the PSE (Parallel Semantic Enhancement) module, which embeds the boundary and position information of the secondary encoder into the output characteristics of the backbone network. In the multi-scale decoding process, we also add SAM (Scale Aware Module) to recover global semantic information and offset for the loss of boundary details. Extensive experiments have shown that MFSE-Net overwhelmingly outperforms SOTA on the renal tumor and polyp datasets.

Multimodal nomogram integrating deep learning radiomics and hemodynamic parameters for early prediction of post-craniotomy intracranial hypertension.

Fu Z, Wang J, Shen W, Wu Y, Zhang J, Liu Y, Wang C, Shen Y, Zhu Y, Zhang W, Lv C, Peng L

pubmed logopapersJul 2 2025
To evaluate the effectiveness of deep learning radiomics nomogram in distinguishing early intracranial hypertension (IH) following primary decompressive craniectomy (DC) in patients with severe traumatic brain injury (TBI) and to demonstrate its potential clinical value as a noninvasive tool for guiding timely intervention and improving patient outcomes. This study included 238 patients with severe TBI (training cohort: n = 166; testing cohort: n = 72). Postoperative ultrasound images of the optic nerve sheath (ONS) and Spectral doppler imaging of middle cerebral artery (MCASDI) were obtained at 6 and 18 h after DC. Patients were grouped according to threshold values of 15 mmHg and 20 mmHg based on invasive intracranial pressure (ICPi) measurements. Clinical-semantic features were collected, and radiomics features were extracted from ONS images, and Additionally, deep transfer learning (DTL) features were generated using RseNet101. Predictive models were developed using the Light Gradient Boosting Machine (light GBM) machine learning algorithm. Clinical-ultrasound variables were incorporated into the model through univariate and multivariate logistic regression. A combined nomogram was developed by integrating DLR (deep learning radiomics) features with clinical-ultrasound variables, and its diagnostic performance over different thresholds was evaluated using Receiver Operating Characteristic (ROC) curve analysis and decision curve analysis (DCA). The nomogram model demonstrated superior performance over the clinical model at both 15 mmHg and 20 mmHg thresholds. For 15 mmHg, the AUC was 0.974 (95% confidence interval [CI]: 0.953-0.995) in the training cohort and 0.919 (95% CI: 0.845-0.993) in the testing cohort. For 20 mmHg, the AUC was 0.968 (95% CI: 0.944-0.993) in the training cohort and 0.889 (95% CI: 0.806-0.972) in the testing cohort. DCA curves showed net clinical benefit across all models. Among DLR models based on ONS, MCASDI, or their pre-fusion, the ONS-based model performed best in the testing cohorts. The nomogram model, incorporating clinical-semantic features, radiomics, and DTL features, exhibited promising performance in predicting early IH in post-DC patients. It shows promise for enhancing non-invasive ICP monitoring and supporting individualized therapeutic strategies.

Multimodal AI to forecast arrhythmic death in hypertrophic cardiomyopathy.

Lai C, Yin M, Kholmovski EG, Popescu DM, Lu DY, Scherer E, Binka E, Zimmerman SL, Chrispin J, Hays AG, Phelan DM, Abraham MR, Trayanova NA

pubmed logopapersJul 2 2025
Sudden cardiac death from ventricular arrhythmias is a leading cause of mortality worldwide. Arrhythmic death prognostication is challenging in patients with hypertrophic cardiomyopathy (HCM), a setting where current clinical guidelines show low performance and inconsistent accuracy. Here, we present a deep learning approach, MAARS (Multimodal Artificial intelligence for ventricular Arrhythmia Risk Stratification), to forecast lethal arrhythmia events in patients with HCM by analyzing multimodal medical data. MAARS' transformer-based neural networks learn from electronic health records, echocardiogram and radiology reports, and contrast-enhanced cardiac magnetic resonance images, the latter being a unique feature of this model. MAARS achieves an area under the curve of 0.89 (95% confidence interval (CI) 0.79-0.94) and 0.81 (95% CI 0.69-0.93) in internal and external cohorts and outperforms current clinical guidelines by 0.27-0.35 (internal) and 0.22-0.30 (external). In contrast to clinical guidelines, it demonstrates fairness across demographic subgroups. We interpret MAARS' predictions on multiple levels to promote artificial intelligence transparency and derive risk factors warranting further investigation.

SPACE: Subregion Perfusion Analysis for Comprehensive Evaluation of Breast Tumor Using Contrast-Enhanced Ultrasound-A Retrospective and Prospective Multicenter Cohort Study.

Fu Y, Chen J, Chen Y, Lin Z, Ye L, Ye D, Gao F, Zhang C, Huang P

pubmed logopapersJul 2 2025
To develop a dynamic contrast-enhanced ultrasound (CEUS)-based method for segmenting tumor perfusion subregions, quantifying tumor heterogeneity, and constructing models for distinguishing benign from malignant breast tumors. This retrospective-prospective cohort study analyzed CEUS videos of patients with breast tumors from four academic medical centers between September 2015 and October 2024. Pixel-based time-intensity curve (TIC) perfusion variables were extracted, followed by the generation of perfusion heterogeneity maps through cluster analysis. A combined diagnostic model incorporating clinical variables, subregion percentages, and radiomics scores was developed, and subsequently, a nomogram based on this model was constructed for clinical application. A total of 339 participants were included in this bidirectional study. Retrospective data included 233 tumors divided into training and test sets. The prospective data comprised 106 tumors as an independent test set. Subregion analysis revealed Subregion 2 dominated benign tumors, while Subregion 3 was prevalent in malignant tumors. Among 59 machine-learning models, Elastic Net (ENET) (α = 0.7) performed best. Age and subregion radiomics scores were independent risk factors. The combined model achieved area under the curve (AUC) values of 0.93, 0.82, and 0.90 in the training, retrospective, and prospective test sets, respectively. The proposed CEUS-based method enhances visualization and quantification of tumor perfusion dynamics, significantly improving the diagnostic accuracy for breast tumors.

Robust brain age estimation from structural MRI with contrastive learning

Carlo Alberto Barbano, Benoit Dufumier, Edouard Duchesnay, Marco Grangetto, Pietro Gori

arxiv logopreprintJul 2 2025
Estimating brain age from structural MRI has emerged as a powerful tool for characterizing normative and pathological aging. In this work, we explore contrastive learning as a scalable and robust alternative to supervised approaches for brain age estimation. We introduce a novel contrastive loss function, $\mathcal{L}^{exp}$, and evaluate it across multiple public neuroimaging datasets comprising over 20,000 scans. Our experiments reveal four key findings. First, scaling pre-training on diverse, multi-site data consistently improves generalization performance, cutting external mean absolute error (MAE) nearly in half. Second, $\mathcal{L}^{exp}$ is robust to site-related confounds, maintaining low scanner-predictability as training size increases. Third, contrastive models reliably capture accelerated aging in patients with cognitive impairment and Alzheimer's disease, as shown through brain age gap analysis, ROC curves, and longitudinal trends. Lastly, unlike supervised baselines, $\mathcal{L}^{exp}$ maintains a strong correlation between brain age accuracy and downstream diagnostic performance, supporting its potential as a foundation model for neuroimaging. These results position contrastive learning as a promising direction for building generalizable and clinically meaningful brain representations.
Page 40 of 92915 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.