Back to all papers

AI-driven body composition monitoring and its prognostic role in mCRPC undergoing lutetium-177 PSMA radioligand therapy: insights from a retrospective single-center analysis.

Authors

Ruhwedel T,Rogasch J,Galler M,Schatka I,Wetz C,Furth C,Biernath N,De Santis M,Shnayien S,Kolck J,Geisel D,Amthauer H,Beetz NL

Affiliations (6)

  • Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. [email protected].
  • Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
  • Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
  • Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
  • Department of Urology, Medical University of Vienna, Vienna, Austria.
  • Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.

Abstract

Body composition (BC) analysis is performed to quantify the relative amounts of different body tissues as a measure of physical fitness and tumor cachexia. We hypothesized that relative changes in body composition (BC) parameters, assessed by an artificial intelligence-based, PACS-integrated software, between baseline imaging before the start of radioligand therapy (RLT) and interim staging after two RLT cycles could predict overall survival (OS) in patients with metastatic castration-resistant prostate cancer. We conducted a single-center, retrospective analysis of 92 patients with mCRPC undergoing [<sup>177</sup>Lu]Lu-PSMA RLT between September 2015 and December 2023. All patients had [<sup>68</sup> Ga]Ga-PSMA-11 PET/CT at baseline (≤ 6 weeks before the first RLT cycle) and at interim staging (6-8 weeks after the second RLT cycle) allowing for longitudinal BC assessment. During follow-up, 78 patients (85%) died. Median OS was 16.3 months. Median follow-up time in survivors was 25.6 months. The 1 year mortality rate was 32.6% (95%CI 23.0-42.2%) and the 5 year mortality rate was 92.9% (95%CI 85.8-100.0%). In multivariable regression, relative change in visceral adipose tissue (VAT) (HR: 0.26; p = 0.006), previous chemotherapy of any type (HR: 2.4; p = 0.003), the presence of liver metastases (HR: 2.4; p = 0.018) and a higher baseline De Ritis ratio (HR: 1.4; p < 0.001) remained independent predictors of OS. Patients with a higher decrease in VAT (< -20%) had a median OS of 10.2 months versus 18.5 months in patients with a lower VAT decrease or VAT increase (≥ -20%) (log-rank test: p = 0.008). In a separate Cox model, the change in VAT predicted OS (p = 0.005) independent of the best PSA response after 1-2 RLT cycles (p = 0.09), and there was no interaction between the two (p = 0.09). PACS-Integrated, AI-based BC monitoring detects relative changes in the VAT, Which was an independent predictor of shorter OS in our population of patients undergoing RLT.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.