Sort by:
Page 37 of 58575 results

Epistasis regulates genetic control of cardiac hypertrophy.

Wang Q, Tang TM, Youlton M, Weldy CS, Kenney AM, Ronen O, Hughes JW, Chin ET, Sutton SC, Agarwal A, Li X, Behr M, Kumbier K, Moravec CS, Tang WHW, Margulies KB, Cappola TP, Butte AJ, Arnaout R, Brown JB, Priest JR, Parikh VN, Yu B, Ashley EA

pubmed logopapersJun 5 2025
Although genetic variant effects often interact nonadditively, strategies to uncover epistasis remain in their infancy. Here we develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy, using deep learning-derived left ventricular mass estimates from 29,661 UK Biobank cardiac magnetic resonance images. We report epistatic variants near CCDC141, IGF1R, TTN and TNKS, identifying loci deemed insignificant in genome-wide association studies. Functional genomic and integrative enrichment analyses reveal that genes mapped from these loci share biological process gene ontologies and myogenic regulatory factors. Transcriptomic network analyses using 313 human hearts demonstrate strong co-expression correlations among these genes in healthy hearts, with significantly reduced connectivity in failing hearts. To assess causality, RNA silencing in human induced pluripotent stem cell-derived cardiomyocytes, combined with novel microfluidic single-cell morphology analysis, confirms that cardiomyocyte hypertrophy is nonadditively modifiable by interactions between CCDC141, TTN and IGF1R. Our results expand the scope of cardiac genetic regulation to epistasis.

Analysis of Research Hotspots and Development Trends in the Diagnosis of Lung Diseases Using Low-Dose CT Based on Bibliometrics.

Liu X, Chen X, Jiang Y, Chen Y, Zhang D, Fan L

pubmed logopapersJun 5 2025
Lung cancer is one of the main threats to global health, among lung diseases. Low-Dose Computed Tomography (LDCT) provides significant benefits for its screening but also brings new diagnostic challenges that require close attention. By searching the Web of Science core collection, we selected articles and reviews published in English between 2005 and June 2024 on topics such as "Low-dose", "CT image", and "Lung". These literatures were analyzed by bibliometric method, and CiteSpace software was used to explore the cooperation between countries, the cooperative relationship between authors, highly cited literature, and the distribution of keywords to reveal the research hotspots and trends in this field. The number of LDCT research articles show a trend of continuous growth between 2019 and 2022. The United States is at the forefront of research in this field, with a centrality of 0.31; China has also rapidly conducted research with a centrality of 0.26. The authors' co-occurrence map shows that research teams in this field are highly cooperative, and their research questions are closely related. The analysis of highly cited literature and keywords confirmed the significant advantages of LDCT in lung cancer screening, which can help reduce the mortality of lung cancer patients and improve the prognosis. "Lung cancer" and "CT" have always been high-frequency keywords, while "image quality" and "low dose CT" have become new hot keywords, indicating that LDCT using deep learning techniques has become a hot topic in early lung cancer research. The study revealed that advancements in CT technology have driven in-depth research from application challenges to image processing, with the research trajectory evolving from technical improvements to health risk assessments and subsequently to AI-assisted diagnosis. Currently, the research focus has shifted toward integrating deep learning with LDCT technology to address complex diagnostic challenges. The study also presents global research trends and geographical distributions of LDCT technology, along with the influence of key research institutions and authors. The comprehensive analysis aims to promote the development and application of LDCT technology in pulmonary disease diagnosis and enhance diagnostic accuracy and patient management efficiency. The future will focus on LDCT reconstruction algorithms to balance image noise and radiation dose. AI-assisted multimodal imaging supports remote diagnosis and personalized health management by providing dynamic analysis, risk assessment, and follow-up recommendations to support early diagnosis.

Stable Vision Concept Transformers for Medical Diagnosis

Lijie Hu, Songning Lai, Yuan Hua, Shu Yang, Jingfeng Zhang, Di Wang

arxiv logopreprintJun 5 2025
Transparency is a paramount concern in the medical field, prompting researchers to delve into the realm of explainable AI (XAI). Among these XAI methods, Concept Bottleneck Models (CBMs) aim to restrict the model's latent space to human-understandable high-level concepts by generating a conceptual layer for extracting conceptual features, which has drawn much attention recently. However, existing methods rely solely on concept features to determine the model's predictions, which overlook the intrinsic feature embeddings within medical images. To address this utility gap between the original models and concept-based models, we propose Vision Concept Transformer (VCT). Furthermore, despite their benefits, CBMs have been found to negatively impact model performance and fail to provide stable explanations when faced with input perturbations, which limits their application in the medical field. To address this faithfulness issue, this paper further proposes the Stable Vision Concept Transformer (SVCT) based on VCT, which leverages the vision transformer (ViT) as its backbone and incorporates a conceptual layer. SVCT employs conceptual features to enhance decision-making capabilities by fusing them with image features and ensures model faithfulness through the integration of Denoised Diffusion Smoothing. Comprehensive experiments on four medical datasets demonstrate that our VCT and SVCT maintain accuracy while remaining interpretable compared to baselines. Furthermore, even when subjected to perturbations, our SVCT model consistently provides faithful explanations, thus meeting the needs of the medical field.

Role of Large Language Models for Suggesting Nerve Involvement in Upper Limbs MRI Reports with Muscle Denervation Signs.

Martín-Noguerol T, López-Úbeda P, Luna A, Gómez-Río M, Górriz JM

pubmed logopapersJun 5 2025
Determining the involvement of specific peripheral nerves (PNs) in the upper limb associated with signs of muscle denervation can be challenging. This study aims to develop, compare, and validate various large language models (LLMs) to automatically identify and establish potential relationships between denervated muscles and their corresponding PNs. We collected 300 retrospective MRI reports in Spanish from upper limb examinations conducted between 2018 and 2024 that showed signs of muscle denervation. An expert radiologist manually annotated these reports based on the affected peripheral nerves (median, ulnar, radial, axillary, and suprascapular). BERT, DistilBERT, mBART, RoBERTa, and Medical-ELECTRA models were fine-tuned and evaluated on the reports. Additionally, an automatic voting system was implemented to consolidate predictions through majority voting. The voting system achieved the highest F1 scores for the median, ulnar, and radial nerves, with scores of 0.88, 1.00, and 0.90, respectively. Medical-ELECTRA also performed well, achieving F1 scores above 0.82 for the axillary and suprascapular nerves. In contrast, mBART demonstrated lower performance, particularly with an F1 score of 0.38 for the median nerve. Our voting system generally outperforms the individually tested LLMs in determining the specific PN likely associated with muscle denervation patterns detected in upper limb MRI reports. This system can thereby assist radiologists by suggesting the implicated PN when generating their radiology reports.

Advancing prenatal healthcare by explainable AI enhanced fetal ultrasound image segmentation using U-Net++ with attention mechanisms.

Singh R, Gupta S, Mohamed HG, Bharany S, Rehman AU, Ghadi YY, Hussen S

pubmed logopapersJun 4 2025
Prenatal healthcare development requires accurate automated techniques for fetal ultrasound image segmentation. This approach allows standardized evaluation of fetal development by minimizing time-exhaustive processes that perform poorly due to human intervention. This research develops a segmentation framework through U-Net++ with ResNet backbone features which incorporates attention components for enhancing extraction of features in low contrast, noisy ultrasound data. The model leverages the nested skip connections of U-Net++ and the residual learning of ResNet-34 to achieve state-of-the-art segmentation accuracy. Evaluations of the developed model against the vast fetal ultrasound image collection yielded superior results by reaching 97.52% Dice coefficient as well as 95.15% Intersection over Union (IoU), and 3.91 mm Hausdorff distance. The pipeline integrated Grad-CAM++ allows explanations of the model decisions for clinical utility and trust enhancement. The explainability component enables medical professionals to study how the model functions, which creates clear and proven segmentation outputs for better overall reliability. The framework fills in the gap between AI automation and clinical interpretability by showing important areas which affect predictions. The research shows that deep learning combined with Explainable AI (XAI) operates to generate medical imaging solutions that achieve high accuracy. The proposed system demonstrates readiness for clinical workflows due to its ability to deliver a sophisticated prenatal diagnostic instrument that enhances healthcare results.

Synthetic multi-inversion time magnetic resonance images for visualization of subcortical structures

Savannah P. Hays, Lianrui Zuo, Anqi Feng, Yihao Liu, Blake E. Dewey, Jiachen Zhuo, Ellen M. Mowry, Scott D. Newsome Jerry L. Prince, Aaron Carass

arxiv logopreprintJun 4 2025
Purpose: Visualization of subcortical gray matter is essential in neuroscience and clinical practice, particularly for disease understanding and surgical planning.While multi-inversion time (multi-TI) T$_1$-weighted (T$_1$-w) magnetic resonance (MR) imaging improves visualization, it is rarely acquired in clinical settings. Approach: We present SyMTIC (Synthetic Multi-TI Contrasts), a deep learning method that generates synthetic multi-TI images using routinely acquired T$_1$-w, T$_2$-weighted (T$_2$-w), and FLAIR images. Our approach combines image translation via deep neural networks with imaging physics to estimate longitudinal relaxation time (T$_1$) and proton density (PD) maps. These maps are then used to compute multi-TI images with arbitrary inversion times. Results: SyMTIC was trained using paired MPRAGE and FGATIR images along with T$_2$-w and FLAIR images. It accurately synthesized multi-TI images from standard clinical inputs, achieving image quality comparable to that from explicitly acquired multi-TI data.The synthetic images, especially for TI values between 400-800 ms, enhanced visualization of subcortical structures and improved segmentation of thalamic nuclei. Conclusion: SyMTIC enables robust generation of high-quality multi-TI images from routine MR contrasts. It generalizes well to varied clinical datasets, including those with missing FLAIR images or unknown parameters, offering a practical solution for improving brain MR image visualization and analysis.

Multimodal data integration for biologically-relevant artificial intelligence to guide adjuvant chemotherapy in stage II colorectal cancer.

Xie C, Ning Z, Guo T, Yao L, Chen X, Huang W, Li S, Chen J, Zhao K, Bian X, Li Z, Huang Y, Liang C, Zhang Q, Liu Z

pubmed logopapersJun 4 2025
Adjuvant chemotherapy provides a limited survival benefit (<5%) for patients with stage II colorectal cancer (CRC) and is suggested for high-risk patients. Given the heterogeneity of stage II CRC, we aimed to develop a clinically explainable artificial intelligence (AI)-powered analyser to identify radiological phenotypes that would benefit from chemotherapy. Multimodal data from patients with CRC across six cohorts were collected, including 405 patients from the Guangdong Provincial People's Hospital for model development and 153 patients from the Yunnan Provincial Cancer Centre for validation. RNA sequencing data were used to identify the differentially expressed genes in the two radiological clusters. Histopathological patterns were evaluated to bridge the gap between the imaging and genetic information. Finally, we investigated the discovered morphological patterns of mouse models to observe imaging features. The survival benefit of chemotherapy varied significantly among the AI-powered radiological clusters [interaction hazard ratio (iHR) = 5.35, (95% CI: 1.98, 14.41), adjusted P<sub>interaction</sub> = 0.012]. Distinct biological pathways related to immune and stromal cell abundance were observed between the clusters. The observation only (OO)-preferable cluster exhibited higher necrosis, haemorrhage, and tortuous vessels, whereas the adjuvant chemotherapy (AC)-preferable cluster exhibited vessels with greater pericyte coverage, allowing for a more enriched infiltration of B, CD4<sup>+</sup>-T, and CD8<sup>+</sup>-T cells into the core tumoural areas. Further experiments confirmed that changes in vessel morphology led to alterations in predictive imaging features. The developed explainable AI-powered analyser effectively identified patients with stage II CRC with improved overall survival after receiving adjuvant chemotherapy, thereby contributing to the advancement of precision oncology. This work was funded by the National Science Fund of China (81925023, 82302299, and U22A2034), Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (2022B1212010011), and High-level Hospital Construction Project (DFJHBF202105 and YKY-KF202204).

Regulating Generative AI in Radiology Practice: A Trilaminar Approach to Balancing Risk with Innovation.

Gowda V, Bizzo BC, Dreyer KJ

pubmed logopapersJun 4 2025
Generative AI tools have proliferated across the market, garnered significant media attention, and increasingly found incorporation into the radiology practice setting. However, they raise a number of unanswered questions concerning governance and appropriate use. By their nature as general-purpose technologies, they strain the limits of existing FDA premarket review pathways to regulate them and introduce new sources of liability, privacy, and clinical risk. A multilayered governance approach is needed to balance innovation with safety. To address gaps in oversight, this piece establishes a trilaminar governance model for generative AI technologies. This treats federal regulations as a scaffold, upon which tiers of institutional guidelines and industry self-regulatory frameworks are added to create a comprehensive paradigm composed of interlocking parts. Doing so would provide radiologists with an effective risk management strategy for the future, foster continued technical development, and ultimately, promote patient care.

Retrieval-Augmented Generation with Large Language Models in Radiology: From Theory to Practice.

Fink A, Rau A, Reisert M, Bamberg F, Russe MF

pubmed logopapersJun 4 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Large language models (LLMs) hold substantial promise in addressing the growing workload in radiology, but recent studies also reveal limitations, such as hallucinations and opacity in sources for LLM responses. Retrieval-augmented Generation (RAG) based LLMs offer a promising approach to streamline radiology workflows by integrating reliable, verifiable, and customizable information. Ongoing refinement is critical to enable RAG models to manage large amounts of input data and to engage in complex multiagent dialogues. This report provides an overview of recent advances in LLM architecture, including few-shot and zero-shot learning, RAG integration, multistep reasoning, and agentic RAG, and identifies future research directions. Exemplary cases demonstrate the practical application of these techniques in radiology practice. ©RSNA, 2025.
Page 37 of 58575 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.