Sort by:
Page 36 of 58575 results

Improving Patient Communication by Simplifying AI-Generated Dental Radiology Reports With ChatGPT: Comparative Study.

Stephan D, Bertsch AS, Schumacher S, Puladi B, Burwinkel M, Al-Nawas B, Kämmerer PW, Thiem DG

pubmed logopapersJun 9 2025
Medical reports, particularly radiology findings, are often written for professional communication, making them difficult for patients to understand. This communication barrier can reduce patient engagement and lead to misinterpretation. Artificial intelligence (AI), especially large language models such as ChatGPT, offers new opportunities for simplifying medical documentation to improve patient comprehension. We aimed to evaluate whether AI-generated radiology reports simplified by ChatGPT improve patient understanding, readability, and communication quality compared to original AI-generated reports. In total, 3 versions of radiology reports were created using ChatGPT: an original AI-generated version (text 1), a patient-friendly, simplified version (text 2), and a further simplified and accessibility-optimized version (text 3). A total of 300 patients (n=100, 33.3% per group), excluding patients with medical education, were randomly assigned to review one text version and complete a standardized questionnaire. Readability was assessed using the Flesch Reading Ease (FRE) score and LIX indices. Both simplified texts showed significantly higher readability scores (text 1: FRE score=51.1; text 2: FRE score=55.0; and text 3: FRE score=56.4; P<.001) and lower LIX scores, indicating enhanced clarity. Text 3 had the shortest sentences, had the fewest long words, and scored best on all patient-rated dimensions. Questionnaire results revealed significantly higher ratings for texts 2 and 3 across clarity (P<.001), tone (P<.001), structure, and patient engagement. For example, patients rated the ability to understand findings without help highest for text 3 (mean 1.5, SD 0.7) and lowest for text 1 (mean 3.1, SD 1.4). Both simplified texts significantly improved patients' ability to prepare for clinical conversations and promoted shared decision-making. AI-generated simplification of radiology reports significantly enhances patient comprehension and engagement. These findings highlight the potential of ChatGPT as a tool to improve patient-centered communication. While promising, future research should focus on ensuring clinical accuracy and exploring applications across diverse patient populations to support equitable and effective integration of AI in health care communication.

A Narrative Review on Large AI Models in Lung Cancer Screening, Diagnosis, and Treatment Planning

Jiachen Zhong, Yiting Wang, Di Zhu, Ziwei Wang

arxiv logopreprintJun 8 2025
Lung cancer remains one of the most prevalent and fatal diseases worldwide, demanding accurate and timely diagnosis and treatment. Recent advancements in large AI models have significantly enhanced medical image understanding and clinical decision-making. This review systematically surveys the state-of-the-art in applying large AI models to lung cancer screening, diagnosis, prognosis, and treatment. We categorize existing models into modality-specific encoders, encoder-decoder frameworks, and joint encoder architectures, highlighting key examples such as CLIP, BLIP, Flamingo, BioViL-T, and GLoRIA. We further examine their performance in multimodal learning tasks using benchmark datasets like LIDC-IDRI, NLST, and MIMIC-CXR. Applications span pulmonary nodule detection, gene mutation prediction, multi-omics integration, and personalized treatment planning, with emerging evidence of clinical deployment and validation. Finally, we discuss current limitations in generalizability, interpretability, and regulatory compliance, proposing future directions for building scalable, explainable, and clinically integrated AI systems. Our review underscores the transformative potential of large AI models to personalize and optimize lung cancer care.

MRI-mediated intelligent multimodal imaging system: from artificial intelligence to clinical imaging diagnosis.

Li Y, Wang J, Pan X, Shan Y, Zhang J

pubmed logopapersJun 8 2025
MRI, as a mature diagnostic method in clinical application, is favored by doctors and patients, there are also insurmountable bottleneck problems. AI strategies such as multimodal imaging integration and machine learning are used to build an intelligent multimodal imaging system based on MRI data to solve the unmet clinical needs in various medical environments. This review systematically discusses the development of MRI-guided multimodal imaging systems and the application of intelligent multimodal imaging systems integrated with artificial intelligence in the early diagnosis of brain and cardiovascular diseases. The safe and effective deployment of AI in clinical diagnostic equipment can help enhance early accurate diagnosis and personalized patient care.

Transfer Learning and Explainable AI for Brain Tumor Classification: A Study Using MRI Data from Bangladesh

Shuvashis Sarker

arxiv logopreprintJun 8 2025
Brain tumors, regardless of being benign or malignant, pose considerable health risks, with malignant tumors being more perilous due to their swift and uncontrolled proliferation, resulting in malignancy. Timely identification is crucial for enhancing patient outcomes, particularly in nations such as Bangladesh, where healthcare infrastructure is constrained. Manual MRI analysis is arduous and susceptible to inaccuracies, rendering it inefficient for prompt diagnosis. This research sought to tackle these problems by creating an automated brain tumor classification system utilizing MRI data obtained from many hospitals in Bangladesh. Advanced deep learning models, including VGG16, VGG19, and ResNet50, were utilized to classify glioma, meningioma, and various brain cancers. Explainable AI (XAI) methodologies, such as Grad-CAM and Grad-CAM++, were employed to improve model interpretability by emphasizing the critical areas in MRI scans that influenced the categorization. VGG16 achieved the most accuracy, attaining 99.17%. The integration of XAI enhanced the system's transparency and stability, rendering it more appropriate for clinical application in resource-limited environments such as Bangladesh. This study highlights the capability of deep learning models, in conjunction with explainable artificial intelligence (XAI), to enhance brain tumor detection and identification in areas with restricted access to advanced medical technologies.

RARL: Improving Medical VLM Reasoning and Generalization with Reinforcement Learning and LoRA under Data and Hardware Constraints

Tan-Hanh Pham, Chris Ngo

arxiv logopreprintJun 7 2025
The growing integration of vision-language models (VLMs) in medical applications offers promising support for diagnostic reasoning. However, current medical VLMs often face limitations in generalization, transparency, and computational efficiency-barriers that hinder deployment in real-world, resource-constrained settings. To address these challenges, we propose a Reasoning-Aware Reinforcement Learning framework, \textbf{RARL}, that enhances the reasoning capabilities of medical VLMs while remaining efficient and adaptable to low-resource environments. Our approach fine-tunes a lightweight base model, Qwen2-VL-2B-Instruct, using Low-Rank Adaptation and custom reward functions that jointly consider diagnostic accuracy and reasoning quality. Training is performed on a single NVIDIA A100-PCIE-40GB GPU, demonstrating the feasibility of deploying such models in constrained environments. We evaluate the model using an LLM-as-judge framework that scores both correctness and explanation quality. Experimental results show that RARL significantly improves VLM performance in medical image analysis and clinical reasoning, outperforming supervised fine-tuning on reasoning-focused tasks by approximately 7.78%, while requiring fewer computational resources. Additionally, we demonstrate the generalization capabilities of our approach on unseen datasets, achieving around 27% improved performance compared to supervised fine-tuning and about 4% over traditional RL fine-tuning. Our experiments also illustrate that diversity prompting during training and reasoning prompting during inference are crucial for enhancing VLM performance. Our findings highlight the potential of reasoning-guided learning and reasoning prompting to steer medical VLMs toward more transparent, accurate, and resource-efficient clinical decision-making. Code and data are publicly available.

Foundation versus domain-specific models for left ventricular segmentation on cardiac ultrasound.

Chao CJ, Gu YR, Kumar W, Xiang T, Appari L, Wu J, Farina JM, Wraith R, Jeong J, Arsanjani R, Kane GC, Oh JK, Langlotz CP, Banerjee I, Fei-Fei L, Adeli E

pubmed logopapersJun 6 2025
The Segment Anything Model (SAM) was fine-tuned on the EchoNet-Dynamic dataset and evaluated on external transthoracic echocardiography (TTE) and Point-of-Care Ultrasound (POCUS) datasets from CAMUS (University Hospital of St Etienne) and Mayo Clinic (99 patients: 58 TTE, 41 POCUS). Fine-tuned SAM was superior or comparable to MedSAM. The fine-tuned SAM also outperformed EchoNet and U-Net models, demonstrating strong generalization, especially on apical 2-chamber (A2C) images (fine-tuned SAM vs. EchoNet: CAMUS-A2C: DSC 0.891 ± 0.040 vs. 0.752 ± 0.196, p < 0.0001) and POCUS (DSC 0.857 ± 0.047 vs. 0.667 ± 0.279, p < 0.0001). Additionally, SAM-enhanced workflow reduced annotation time by 50% (11.6 ± 4.5 sec vs. 5.7 ± 1.7 sec, p < 0.0001) while maintaining segmentation quality. We demonstrated an effective strategy for fine-tuning a vision foundation model for enhancing clinical workflow efficiency and supporting human-AI collaboration.

Clinically Interpretable Deep Learning via Sparse BagNets for Epiretinal Membrane and Related Pathology Detection

Ofosu Mensah, S., Neubauer, J., Ayhan, M. S., Djoumessi Donteu, K. R., Koch, L. M., Uzel, M. M., Gelisken, F., Berens, P.

medrxiv logopreprintJun 6 2025
Epiretinal membrane (ERM) is a vitreoretinal interface disease that, if not properly addressed, can lead to vision impairment and negatively affect quality of life. For ERM detection and treatment planning, Optical Coherence Tomography (OCT) has become the primary imaging modality, offering non-invasive, high-resolution cross-sectional imaging of the retina. Deep learning models have also led to good ERM detection performance on OCT images. Nevertheless, most deep learning models cannot be easily understood by clinicians, which limits their acceptance in clinical practice. Post-hoc explanation methods have been utilised to support the uptake of models, albeit, with partial success. In this study, we trained a sparse BagNet model, an inherently interpretable deep learning model, to detect ERM in OCT images. It performed on par with a comparable black-box model and generalised well to external data. In a multitask setting, it also accurately predicted other changes related to the ERM pathophysiology. Through a user study with ophthalmologists, we showed that the visual explanations readily provided by the sparse BagNet model for its decisions are well-aligned with clinical expertise. We propose potential directions for clinical implementation of the sparse BagNet model to guide clinical decisions in practice.

Dual-stage AI system for Pathologist-Free Tumor Detectionand subtyping in Oral Squamous Cell Carcinoma

Chaudhary, N., Muddemanavar, P., Singh, D. K., Rai, A., Mishra, D., SV, S., Augustine, J., Chandra, A., Chaurasia, A., Ahmad, T.

medrxiv logopreprintJun 6 2025
BackgroundAccurate histological grading of oral squamous cell carcinoma (OSCC) is critical for prognosis and treatment planning. Current methods lack automation for OSCC detection, subtyping, and differentiation from high-risk pre-malignant conditions like oral submucous fibrosis (OSMF). Further, analysis of whole-slide image (WSI) analysis is time-consuming and variable, limiting consistency. We present a clinically relevant deep learning framework that leverages weakly supervised learning and attention-based multiple instance learning (MIL) to enable automated OSCC grading and early prediction of malignant transformation from OSMF. MethodsWe conducted a multi-institutional retrospective cohort study using a curated dataset of 1,925 whole-slide images (WSIs), including 1,586 OSCC cases stratified into well-, moderately-, and poorly-differentiated subtypes (WD, MD, and PD), 128 normal controls, and 211 OSMF and OSMF with OSCC cases. We developed a two-stage deep learning pipeline named OralPatho. In stage one, an attention-based multiple instance learning (MIL) model was trained to perform binary classification (normal vs OSCC). In stage two, a gated attention mechanism with top-K patch selection was employed to classify the OSCC subtypes. Model performance was assessed using stratified 3-fold cross-validation and external validation on an independent dataset. FindingsThe binary classifier demonstrated robust performance with a mean F1-score exceeding 0.93 across all validation folds. The multiclass model achieved consistent macro-F1 scores of 0.72, 0.70, and 0.68, along with AUCs of 0.79 for WD, 0.71 for MD, and 0.61 for PD OSCC subtypes. Model generalizability was validated using an independent external dataset. Attention maps reliably highlighted clinically relevant histological features, supporting the systems interpretability and diagnostic alignment with expert pathological assessment. InterpretationThis study demonstrates the feasibility of attention-based, weakly supervised learning for accurate OSCC grading from whole-slide images. OralPatho combines high diagnostic performance with real-time interpretability, making it a scalable solution for both advanced pathology labs and resource-limited settings.

Quasi-supervised MR-CT image conversion based on unpaired data.

Zhu R, Ruan Y, Li M, Qian W, Yao Y, Teng Y

pubmed logopapersJun 6 2025
In radiotherapy planning, acquiring both magnetic resonance (MR) and computed tomography (CT) images is crucial for comprehensive evaluation and treatment. However, simultaneous acquisition of MR and CT images is time-consuming, economically expensive, and involves ionizing radiation, which poses health risks to patients. The objective of this study is to generate CT images from radiation-free MR images using a novel quasi-supervised learning framework. In this work, we propose a quasi-supervised framework to explore the underlying relationship between unpaired MR and CT images. Normalized mutual information (NMI) is employed as a similarity metric to evaluate the correspondence between MR and CT scans. To establish optimal pairings, we compute an NMI matrix across the training set and apply the Hungarian algorithm for global matching. The resulting MR-CT pairs, along with their NMI scores, are treated as prior knowledge and integrated into the training process to guide the MR-to-CT image translation model. Experimental results indicate that the proposed method significantly outperforms existing unsupervised image synthesis methods in terms of both image quality and consistency of image features during the MR to CT image conversion process. The generated CT images show a higher degree of accuracy and fidelity to the original MR images, ensuring better preservation of anatomical details and structural integrity. This study proposes a quasi-supervised framework that converts unpaired MR and CT images into structurally consistent pseudo-pairs, providing informative priors to enhance cross-modality image synthesis. This strategy not only improves the accuracy and reliability of MR-CT conversion, but also reduces reliance on costly and scarce paired datasets. The proposed framework offers a practical 1 and scalable solution for real-world medical imaging applications, where paired annotations are often unavailable.

Performance analysis of large language models in multi-disease detection from chest computed tomography reports: a comparative study: Experimental Research.

Luo P, Fan C, Li A, Jiang T, Jiang A, Qi C, Gan W, Zhu L, Mou W, Zeng D, Tang B, Xiao M, Chu G, Liang Z, Shen J, Liu Z, Wei T, Cheng Q, Lin A, Chen X

pubmed logopapersJun 5 2025
Computed Tomography (CT) is widely acknowledged as the gold standard for diagnosing thoracic diseases. However, the accuracy of interpretation significantly depends on radiologists' expertise. Large Language Models (LLMs) have shown considerable promise in various medical applications, particularly in radiology. This study aims to assess the performance of leading LLMs in analyzing unstructured chest CT reports and to examine how different questioning methodologies and fine-tuning strategies influence their effectiveness in enhancing chest CT diagnosis. This retrospective analysis evaluated 13,489 chest CT reports encompassing 13 common thoracic conditions across pulmonary, cardiovascular, pleural, and upper abdominal systems. Five LLMs (Claude-3.5-Sonnet, GPT-4, GPT-3.5-Turbo, Gemini-Pro, Qwen-Max) were assessed using dual questioning methodologies: multiple-choice and open-ended. Radiologist-curated datasets underwent rigorous preprocessing, including RadLex terminology standardization, multi-step diagnostic validation, and exclusion of ambiguous cases. Model performance was quantified via Subjective Answer Accuracy Rate (SAAR), Reference Answer Accuracy Rate (RAAR), and Area Under the Receiver Operating Characteristic (ROC) Curve analysis. GPT-3.5-Turbo underwent fine-tuning (100 iterations with one training epoch) on 200 high-performing cases to enhance diagnostic precision for initially misclassified conditions. GPT-4 demonstrated superior performance with the highest RAAR of 75.1% in multiple-choice questioning, followed by Qwen-Max (66.0%) and Claude-3.5 (63.5%), significantly outperforming GPT-3.5-Turbo (41.8%) and Gemini-Pro (40.8%) across the entire patient cohort. Multiple-choice questioning consistently improved both RAAR and SAAR for all models compared to open-ended questioning, with RAAR consistently surpassing SAAR. Model performance demonstrated notable variations across different diseases and organ conditions. Notably, fine-tuning substantially enhanced the performance of GPT-3.5-Turbo, which initially exhibited suboptimal results in most scenarios. This study demonstrated that general-purpose LLMs can effectively interpret chest CT reports, with performance varying significantly across models depending on the questioning methodology and fine-tuning approaches employed. For surgical practice, these findings provided evidence-based guidance for selecting appropriate AI tools to enhance preoperative planning, particularly for thoracic procedures. The integration of optimized LLMs into surgical workflows may improve decision-making efficiency, risk stratification, and diagnostic speed, potentially contributing to better surgical outcomes through more accurate preoperative assessment.
Page 36 of 58575 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.