Sort by:
Page 36 of 38374 results

Computationally Efficient Diffusion Models in Medical Imaging: A Comprehensive Review

Abdullah, Tao Huang, Ickjai Lee, Euijoon Ahn

arxiv logopreprintMay 9 2025
The diffusion model has recently emerged as a potent approach in computer vision, demonstrating remarkable performances in the field of generative artificial intelligence. Capable of producing high-quality synthetic images, diffusion models have been successfully applied across a range of applications. However, a significant challenge remains with the high computational cost associated with training and generating these models. This study focuses on the efficiency and inference time of diffusion-based generative models, highlighting their applications in both natural and medical imaging. We present the most recent advances in diffusion models by categorizing them into three key models: the Denoising Diffusion Probabilistic Model (DDPM), the Latent Diffusion Model (LDM), and the Wavelet Diffusion Model (WDM). These models play a crucial role in medical imaging, where producing fast, reliable, and high-quality medical images is essential for accurate analysis of abnormalities and disease diagnosis. We first investigate the general framework of DDPM, LDM, and WDM and discuss the computational complexity gap filled by these models in natural and medical imaging. We then discuss the current limitations of these models as well as the opportunities and future research directions in medical imaging.

Noise-Consistent Siamese-Diffusion for Medical Image Synthesis and Segmentation

Kunpeng Qiu, Zhiqiang Gao, Zhiying Zhou, Mingjie Sun, Yongxin Guo

arxiv logopreprintMay 9 2025
Deep learning has revolutionized medical image segmentation, yet its full potential remains constrained by the paucity of annotated datasets. While diffusion models have emerged as a promising approach for generating synthetic image-mask pairs to augment these datasets, they paradoxically suffer from the same data scarcity challenges they aim to mitigate. Traditional mask-only models frequently yield low-fidelity images due to their inability to adequately capture morphological intricacies, which can critically compromise the robustness and reliability of segmentation models. To alleviate this limitation, we introduce Siamese-Diffusion, a novel dual-component model comprising Mask-Diffusion and Image-Diffusion. During training, a Noise Consistency Loss is introduced between these components to enhance the morphological fidelity of Mask-Diffusion in the parameter space. During sampling, only Mask-Diffusion is used, ensuring diversity and scalability. Comprehensive experiments demonstrate the superiority of our method. Siamese-Diffusion boosts SANet's mDice and mIoU by 3.6% and 4.4% on the Polyps, while UNet improves by 1.52% and 1.64% on the ISIC2018. Code is available at GitHub.

Harnessing Advanced Machine Learning Techniques for Microscopic Vessel Segmentation in Pulmonary Fibrosis Using Novel Hierarchical Phase-Contrast Tomography Images.

Vasudev P, Azimbagirad M, Aslani S, Xu M, Wang Y, Chapman R, Coleman H, Werlein C, Walsh C, Lee P, Tafforeau P, Jacob J

pubmed logopapersMay 9 2025
 Fibrotic lung disease is a progressive illness that causes scarring and ultimately respiratory failure, with irreversible damage by the time it is diagnosed on computed tomography imaging. Recent research postulates the role of the lung vasculature on the pathogenesis of the disease. With the recent development of high-resolution hierarchical phase-contrast tomography (HiP-CT), we have the potential to understand and detect changes in the lungs long before conventional imaging. However, to gain quantitative insight into vascular changes you first need to be able to segment the vessels before further downstream analysis can be conducted. Aside from this, HiP-CT generates large-volume, high-resolution data which is time-consuming and expensive to label.  This project aims to qualitatively assess the latest machine learning methods for vessel segmentation in HiP-CT data to enable label propagation as the first step for imaging biomarker discovery, with the goal to identify early-stage interstitial lung disease amenable to treatment, before fibrosis begins.  Semisupervised learning (SSL) has become a growing method to tackle sparsely labeled datasets due to its leveraging of unlabeled data. In this study, we will compare two SSL methods; Seg PL, based on pseudo-labeling, and MisMatch, using consistency regularization against state-of-the-art supervised learning method, nnU-Net, on vessel segmentation in sparsely labeled lung HiP-CT data.  On initial experimentation, both MisMatch and SegPL showed promising performance on qualitative review. In comparison with supervised learning, both MisMatch and SegPL showed better out-of-distribution performance within the same sample (different vessel morphology and texture vessels), though supervised learning provided more consistent segmentations for well-represented labels in the limited annotations.  Further quantitative research is required to better assess the generalizability of these findings, though they show promising first steps toward leveraging this novel data to tackle fibrotic lung disease.

APD-FFNet: A Novel Explainable Deep Feature Fusion Network for Automated Periodontitis Diagnosis on Dental Panoramic Radiography.

Resul ES, Senirkentli GB, Bostanci E, Oduncuoglu BF

pubmed logopapersMay 9 2025
This study introduces APD-FFNet, a novel, explainable deep learning architecture for automated periodontitis diagnosis using panoramic radiographs. A total of 337 panoramic radiographs, annotated by a periodontist, served as the dataset. APD-FFNet combines custom convolutional and transformer-based layers within a deep feature fusion framework that captures both local and global contextual features. Performance was evaluated using accuracy, the F1 score, the area under the receiver operating characteristic curve, the Jaccard similarity coefficient, and the Matthews correlation coefficient. McNemar's test confirmed statistical significance, and SHapley Additive exPlanations provided interpretability insights. APD-FFNet achieved 94% accuracy, a 93.88% F1 score, 93.47% area under the receiver operating characteristic curve, 88.47% Jaccard similarity coefficient, and 88.46% Matthews correlation coefficient, surpassing comparable approaches. McNemar's test validated these findings (p < 0.05). Explanations generated by SHapley Additive exPlanations highlighted important regions in each radiograph, supporting clinical applicability. By merging convolutional and transformer-based layers, APD-FFNet establishes a new benchmark in automated, interpretable periodontitis diagnosis, with low hyperparameter sensitivity facilitating its integration into regular dental practice. Its adaptable design suggests broader relevance to other medical imaging domains. This is the first feature fusion method specifically devised for periodontitis diagnosis, supported by an expert-curated dataset and advanced explainable artificial intelligence. Its robust accuracy, low hyperparameter sensitivity, and transparent outputs set a new standard for automated periodontal analysis.

Are Diffusion Models Effective Good Feature Extractors for MRI Discriminative Tasks?

Li B, Sun Z, Li C, Kamagata K, Andica C, Uchida W, Takabayashi K, Guo S, Zou R, Aoki S, Tanaka T, Zhao Q

pubmed logopapersMay 8 2025
Diffusion models (DMs) excel in pixel-level and spatial tasks and are proven feature extractors for 2D image discriminative tasks when pretrained. However, their capabilities in 3D MRI discriminative tasks remain largely untapped. This study seeks to assess the effectiveness of DMs in this underexplored area. We use 59830 T1-weighted MR images (T1WIs) from the extensive, yet unlabeled, UK Biobank dataset. Additionally, we apply 369 T1WIs from the BraTS2020 dataset specifically for brain tumor classification, and 421 T1WIs from the ADNI1 dataset for the diagnosis of Alzheimer's disease. Firstly, a high-performing denoising diffusion probabilistic model (DDPM) with a U-Net backbone is pretrained on the UK Biobank, then fine-tuned on the BraTS2020 and ADNI1 datasets. Afterward, we assess its feature representation capabilities for discriminative tasks using linear probes. Finally, we accordingly introduce a novel fusion module, named CATS, that enhances the U-Net representations, thereby improving performance on discriminative tasks. Our DDPM produces synthetic images of high quality that match the distribution of the raw datasets. Subsequent analysis reveals that DDPM features extracted from middle blocks and smaller timesteps are of high quality. Leveraging these features, the CATS module, with just 1.7M additional parameters, achieved average classification scores of 0.7704 and 0.9217 on the BraTS2020 and ADNI1 datasets, demonstrating competitive performance with that of the representations extracted from the transferred DDPM model, as well as the 33.23M parameters ResNet18 trained from scratch. We have found that pretraining a DM on a large-scale dataset and then fine-tuning it on limited data from discriminative datasets is a viable approach for MRI data. With these well-performing DMs, we show that they excel not just in generation tasks but also as feature extractors when combined with our proposed CATS module.

A hybrid AI method for lung cancer classification using explainable AI techniques.

Shivwanshi RR, Nirala NS

pubmed logopapersMay 8 2025
The use of Artificial Intelligence (AI) methods for the analysis of CT (computed tomography) images has greatly contributed to the development of an effective computer-assisted diagnosis (CAD) system for lung cancer (LC). However, complex structures, multiple radiographic interrelations, and the dynamic locations of abnormalities within lung CT images make extracting relevant information to process and implement LC CAD systems difficult. These prominent problems are addressed in this paper by presenting a hybrid method of LC malignancy classification, which may help researchers and experts properly engineer the model's performance by observing how the model makes decisions. The proposed methodology is named IncCat-LCC: Explainer (Inception Net Cat Boost LC Classification: Explainer), which consists of feature extraction (FE) using the handcrafted radiomic Feature (HcRdF) extraction technique, InceptionNet CNN Feature (INCF) extraction, Vision Transformer Feature (ViTF) extraction, and XGBOOST (XGB)-based feature selection, and the GPU based CATBOOST (CB) classification technique. The proposed framework achieves better and highest performance scores for lung nodule multiclass malignancy classification when evaluated using metrics such as accuracy, precision, recall, f-1 score, specificity, and area under the roc curve as 96.74 %, 93.68 %, 96.74 %, 95.19 %, 98.47 % and 99.76 % consecutively for classifying highly normal class. Observing the explainable artificial intelligence (XAI) explanations will help readers understand the model performance and the statistical outcomes of the evaluation parameter. The work presented in this article may improve the existing LC CAD system and help assess the important parameters using XAI to recognize the factors contributing to enhanced performance and reliability.

Cross-Institutional Evaluation of Large Language Models for Radiology Diagnosis Extraction: A Prompt-Engineering Perspective.

Moassefi M, Houshmand S, Faghani S, Chang PD, Sun SH, Khosravi B, Triphati AG, Rasool G, Bhatia NK, Folio L, Andriole KP, Gichoya JW, Erickson BJ

pubmed logopapersMay 8 2025
The rapid evolution of large language models (LLMs) offers promising opportunities for radiology report annotation, aiding in determining the presence of specific findings. This study evaluates the effectiveness of a human-optimized prompt in labeling radiology reports across multiple institutions using LLMs. Six distinct institutions collected 500 radiology reports: 100 in each of 5 categories. A standardized Python script was distributed to participating sites, allowing the use of one common locally executed LLM with a standard human-optimized prompt. The script executed the LLM's analysis for each report and compared predictions to reference labels provided by local investigators. Models' performance using accuracy was calculated, and results were aggregated centrally. The human-optimized prompt demonstrated high consistency across sites and pathologies. Preliminary analysis indicates significant agreement between the LLM's outputs and investigator-provided reference across multiple institutions. At one site, eight LLMs were systematically compared, with Llama 3.1 70b achieving the highest performance in accurately identifying the specified findings. Comparable performance with Llama 3.1 70b was observed at two additional centers, demonstrating the model's robust adaptability to variations in report structures and institutional practices. Our findings illustrate the potential of optimized prompt engineering in leveraging LLMs for cross-institutional radiology report labeling. This approach is straightforward while maintaining high accuracy and adaptability. Future work will explore model robustness to diverse report structures and further refine prompts to improve generalizability.

Weakly supervised language models for automated extraction of critical findings from radiology reports.

Das A, Talati IA, Chaves JMZ, Rubin D, Banerjee I

pubmed logopapersMay 8 2025
Critical findings in radiology reports are life threatening conditions that need to be communicated promptly to physicians for timely management of patients. Although challenging, advancements in natural language processing (NLP), particularly large language models (LLMs), now enable the automated identification of key findings from verbose reports. Given the scarcity of labeled critical findings data, we implemented a two-phase, weakly supervised fine-tuning approach on 15,000 unlabeled Mayo Clinic reports. This fine-tuned model then automatically extracted critical terms on internal (Mayo Clinic, n = 80) and external (MIMIC-III, n = 123) test datasets, validated against expert annotations. Model performance was further assessed on 5000 MIMIC-IV reports using LLM-aided metrics, G-eval and Prometheus. Both manual and LLM-based evaluations showed improved task alignment with weak supervision. The pipeline and model, publicly available under an academic license, can aid in critical finding extraction for research and clinical use ( https://github.com/dasavisha/CriticalFindings_Extract ).

From Genome to Phenome: Opportunities and Challenges of Molecular Imaging.

Tian M, Hood L, Chiti A, Schwaiger M, Minoshima S, Watanabe Y, Kang KW, Zhang H

pubmed logopapersMay 8 2025
The study of the human phenome is essential for understanding the complexities of wellness and disease and their transitions, with molecular imaging being a vital tool in this exploration. Molecular imaging embodies the 4 principles of human phenomics: precise measurement, accurate calculation or analysis, well-controlled manipulation or intervention, and innovative invention or creation. Its application has significantly enhanced the precision, individualization, and effectiveness of medical interventions. This article provides an overview of molecular imaging's technologic advancements and presents the potential use of molecular imaging in human phenomics and precision medicine. The integration of molecular imaging with multiomics data and artificial intelligence has the potential to transform health care, promoting proactive and preventive strategies. This evolving approach promises to deepen our understanding of the human phenome, lead to preclinical diagnostics and treatments, and establish quantitative frameworks for precision health management.

Interpretable MRI-Based Deep Learning for Alzheimer's Risk and Progression

Lu, B., Chen, Y.-R., Li, R.-X., Zhang, M.-K., Yan, S.-Z., Chen, G.-Q., Castellanos, F. X., Thompson, P. M., Lu, J., Han, Y., Yan, C.-G.

medrxiv logopreprintMay 7 2025
Timely intervention for Alzheimers disease (AD) requires early detection. The development of immunotherapies targeting amyloid-beta and tau underscores the need for accessible, time-efficient biomarkers for early diagnosis. Here, we directly applied our previously developed MRI-based deep learning model for AD to the large Chinese SILCODE cohort (722 participants, 1,105 brain MRI scans). The model -- initially trained on North American data -- demonstrated robust cross-ethnic generalization, without any retraining or fine-tuning, achieving an AUC of 91.3% in AD classification with a sensitivity of 95.2%. It successfully identified 86.7% of individuals at risk of AD progression more than 5 years in advance. Individuals identified as high-risk exhibited significantly shorter median progression times. By integrating an interpretable deep learning brain risk map approach, we identified AD brain subtypes, including an MCI subtype associated with rapid cognitive decline. The models risk scores showed significant correlations with cognitive measures and plasma biomarkers, such as tau proteins and neurofilament light chain (NfL). These findings underscore the exceptional generalizability and clinical utility of MRI-based deep learning models, especially in large and diverse populations, offering valuable tools for early therapeutic intervention. The model has been made open-source and deployed to a free online website for AD risk prediction, to assist in early screening and intervention.
Page 36 of 38374 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.