Real-time Monitoring of Urinary Stone Status During Shockwave Lithotripsy.
Authors
Affiliations (1)
Affiliations (1)
- University of Alabama Birmingham, Department of Microbiology, 845 19th Street South, Birmingham, AL 35294. Electronic address: [email protected].
Abstract
To develop a standardized, real-time feedback system for monitoring urinary stone fragmentation during shockwave lithotripsy (SWL), thereby optimizing treatment efficacy and minimizing patient risk. A two-pronged approach was implemented to quantify stone fragmentation in C-arm X-ray images. First, the initial pre-treatment stone image was compared to subsequent images to measure stone area loss. Second, a Convolutional Neural Network (CNN) was trained to estimate the probability that an image contains a urinary stone. These two criteria were integrated to create a real-time signaling system capable of evaluating shockwave efficacy during SWL. The system was developed using data from 522 shockwave treatments encompassing 4,057 C-arm X-ray images. The combined area-loss metric and CNN output enabled consistent real-time assessment of stone fragmentation, providing actionable feedback to guide SWL in diverse clinical contexts. The proposed system offers a novel and reliable method for monitoring of urinary stone fragmentation during SWL. By helping to balance treatment efficacy with patient safety, it holds significant promise for semi-automated SWL platforms, particularly in resource-limited or remote environments such as arid regions and extended space missions.