Sort by:
Page 340 of 3423413 results

New Targets for Imaging in Nuclear Medicine.

Brink A, Paez D, Estrada Lobato E, Delgado Bolton RC, Knoll P, Korde A, Calapaquí Terán AK, Haidar M, Giammarile F

pubmed logopapersMay 6 2025
Nuclear medicine is rapidly evolving with new molecular imaging targets and advanced computational tools that promise to enhance diagnostic precision and personalized therapy. Recent years have seen a surge in novel PET and SPECT tracers, such as those targeting prostate-specific membrane antigen (PSMA) in prostate cancer, fibroblast activation protein (FAP) in tumor stroma, and tau protein in neurodegenerative disease. These tracers enable more specific visualization of disease processes compared to traditional agents, fitting into a broader shift toward precision imaging in oncology and neurology. In parallel, artificial intelligence (AI) and machine learning techniques are being integrated into tracer development and image analysis. AI-driven methods can accelerate radiopharmaceutical discovery, optimize pharmacokinetic properties, and assist in interpreting complex imaging datasets. This editorial provides an expanded overview of emerging imaging targets and techniques, including theranostic applications that pair diagnosis with radionuclide therapy, and examines how AI is augmenting nuclear medicine. We discuss the implications of these advancements within the field's historical trajectory and address the regulatory, manufacturing, and clinical challenges that must be navigated. Innovations in molecular targeting and AI are poised to transform nuclear medicine practice, enabling more personalized diagnostics and radiotheranostic strategies in the era of precision healthcare.

Designing a computer-assisted diagnosis system for cardiomegaly detection and radiology report generation.

Zhu T, Xu K, Son W, Linton-Reid K, Boubnovski-Martell M, Grech-Sollars M, Lain AD, Posma JM

pubmed logopapersMay 1 2025
Chest X-ray (CXR) is a diagnostic tool for cardiothoracic assessment. They make up 50% of all diagnostic imaging tests. With hundreds of images examined every day, radiologists can suffer from fatigue. This fatigue may reduce diagnostic accuracy and slow down report generation. We describe a prototype computer-assisted diagnosis (CAD) pipeline employing computer vision (CV) and Natural Language Processing (NLP). It was trained and evaluated on the publicly available MIMIC-CXR dataset. We perform image quality assessment, view labelling, and segmentation-based cardiomegaly severity classification. We use the output of the severity classification for large language model-based report generation. Four board-certified radiologists assessed the output accuracy of our CAD pipeline. Across the dataset composed of 377,100 CXR images and 227,827 free-text radiology reports, our system identified 0.18% of cases with mixed-sex mentions, 0.02% of poor quality images (F1 = 0.81), and 0.28% of wrongly labelled views (accuracy 99.4%). We assigned views for 4.18% of images which have unlabelled views. Our binary cardiomegaly classification model has 95.2% accuracy. The inter-radiologist agreement on evaluating the generated report's semantics and correctness for radiologist-MIMIC is 0.62 (strict agreement) and 0.85 (relaxed agreement) similar to the radiologist-CAD agreement of 0.55 (strict) and 0.93 (relaxed). Our work found and corrected several incorrect or missing metadata annotations for the MIMIC-CXR dataset. The performance of our CAD system suggests performance on par with human radiologists. Future improvements revolve around improved text generation and the development of CV tools for other diseases.

Improving lung cancer diagnosis and survival prediction with deep learning and CT imaging.

Wang X, Sharpnack J, Lee TCM

pubmed logopapersJan 1 2025
Lung cancer is a major cause of cancer-related deaths, and early diagnosis and treatment are crucial for improving patients' survival outcomes. In this paper, we propose to employ convolutional neural networks to model the non-linear relationship between the risk of lung cancer and the lungs' morphology revealed in the CT images. We apply a mini-batched loss that extends the Cox proportional hazards model to handle the non-convexity induced by neural networks, which also enables the training of large data sets. Additionally, we propose to combine mini-batched loss and binary cross-entropy to predict both lung cancer occurrence and the risk of mortality. Simulation results demonstrate the effectiveness of both the mini-batched loss with and without the censoring mechanism, as well as its combination with binary cross-entropy. We evaluate our approach on the National Lung Screening Trial data set with several 3D convolutional neural network architectures, achieving high AUC and C-index scores for lung cancer classification and survival prediction. These results, obtained from simulations and real data experiments, highlight the potential of our approach to improving the diagnosis and treatment of lung cancer.

Application research of artificial intelligence software in the analysis of thyroid nodule ultrasound image characteristics.

Xu C, Wang Z, Zhou J, Hu F, Wang Y, Xu Z, Cai Y

pubmed logopapersJan 1 2025
Thyroid nodule, as a common clinical endocrine disease, has become increasingly prevalent worldwide. Ultrasound, as the premier method of thyroid imaging, plays an important role in accurately diagnosing and managing thyroid nodules. However, there is a high degree of inter- and intra-observer variability in image interpretation due to the different knowledge and experience of sonographers who have huge ultrasound examination tasks everyday. Artificial intelligence based on computer-aided diagnosis technology maybe improve the accuracy and time efficiency of thyroid nodules diagnosis. This study introduced an artificial intelligence software called SW-TH01/II to evaluate ultrasound image characteristics of thyroid nodules including echogenicity, shape, border, margin, and calcification. We included 225 ultrasound images from two hospitals in Shanghai, respectively. The sonographers and software performed characteristics analysis on the same group of images. We analyzed the consistency of the two results and used the sonographers' results as the gold standard to evaluate the accuracy of SW-TH01/II. A total of 449 images were included in the statistical analysis. For the seven indicators, the proportions of agreement between SW-TH01/II and sonographers' analysis results were all greater than 0.8. For the echogenicity (with very hypoechoic), aspect ratio and margin, the kappa coefficient between the two methods were above 0.75 (P < 0.001). The kappa coefficients of echogenicity (echotexture and echogenicity level), border and calcification between the two methods were above 0.6 (P < 0.001). The median time it takes for software and sonographers to interpret an image were 3 (2, 3) seconds and 26.5 (21.17, 34.33) seconds, respectively, and the difference were statistically significant (z = -18.36, P < 0.001). SW-TH01/II has a high degree of accuracy and great time efficiency benefits in judging the characteristics of thyroid nodule. It can provide more objective results and improve the efficiency of ultrasound examination. SW-TH01/II can be used to assist the sonographers in characterizing the thyroid nodule ultrasound images.

Intelligent and precise auxiliary diagnosis of breast tumors using deep learning and radiomics.

Wang T, Zang B, Kong C, Li Y, Yang X, Yu Y

pubmed logopapersJan 1 2025
Breast cancer is the most common malignant tumor among women worldwide, and early diagnosis is crucial for reducing mortality rates. Traditional diagnostic methods have significant limitations in terms of accuracy and consistency. Imaging is a common technique for diagnosing and predicting breast cancer, but human error remains a concern. Increasingly, artificial intelligence (AI) is being employed to assist physicians in reducing diagnostic errors. We developed an intelligent diagnostic model combining deep learning and radiomics to enhance breast tumor diagnosis. The model integrates MobileNet with ResNeXt-inspired depthwise separable and grouped convolutions, improving feature processing and efficiency while reducing parameters. Using AI-Dhabyani and TCIA breast ultrasound datasets, we validated the model internally and externally, comparing it to VGG16, ResNet, AlexNet, and MobileNet. Results: The internal validation set achieved an accuracy of 83.84% with an AUC of 0.92, outperforming other models. The external validation set showed an accuracy of 69.44% with an AUC of 0.75, demonstrating high robustness and generalizability. Conclusions: We developed an intelligent diagnostic model using deep learning and radiomics to improve breast tumor diagnosis. The model combines MobileNet with ResNeXt-inspired depthwise separable and grouped convolutions, enhancing feature processing and efficiency while reducing parameters. It was validated internally and externally using the AI-Dhabyani and TCIA breast ultrasound datasets and compared with VGG16, ResNet, AlexNet, and MobileNet.

Ground-truth-free deep learning approach for accelerated quantitative parameter mapping with memory efficient learning.

Fujita N, Yokosawa S, Shirai T, Terada Y

pubmed logopapersJan 1 2025
Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI.

Principles for Developing a Large-Scale Point-of-Care Ultrasound Education Program: Insights from a Tertiary University Medical Center in Israel.

Dayan RR, Karni O, Shitrit IB, Gaufberg R, Ilan K, Fuchs L

pubmed logopapersJan 1 2025
Point-of-care ultrasound (POCUS) has transformed bedside diagnostics, yet its operator-dependent nature and lack of structured training remain significant barriers. To address these challenges, Ben Gurion University (BGU) developed a longitudinal six-year POCUS curriculum, emphasizing early integration, competency-based training, and scalable educational strategies to enhance medical education and patient care. To implement a structured and scalable POCUS curriculum that progressively builds technical proficiency, clinical judgment, and diagnostic accuracy, ensuring medical students effectively integrate POCUS into clinical practice. The curriculum incorporates hands-on training, self-directed learning, a structured spiral approach, and peer-led instruction. Early exposure in physics and anatomy courses establishes a foundation, progressing to bedside applications in clinical years. Advanced technologies, including AI-driven feedback and telemedicine, enhance skill retention and address faculty shortages by providing scalable solutions for ongoing assessment and feedback. Since its implementation in 2014, the program has trained hundreds of students, with longitudinal proficiency data from over 700 students. Internal studies have demonstrated that self-directed learning modules match or exceed in-person instruction for ultrasound skill acquisition, AI-driven feedback enhances image acquisition, and early clinical integration of POCUS positively influences patient care. Preliminary findings suggest that telemedicine-based instructor feedback improves cardiac ultrasound proficiency over time, and AI-assisted probe manipulation and self-learning with ultrasound simulators may further optimize training without requiring in-person instruction. A structured longitudinal approach ensures progressive skill acquisition while addressing faculty shortages and training limitations. Cost-effective strategies, such as peer-led instruction, AI feedback, and telemedicine, support skill development and sustainability. Emphasizing clinical integration ensures students learn to use POCUS as a targeted diagnostic adjunct rather than a broad screening tool, reinforcing its role as an essential skill in modern medical education.

Patients', clinicians' and developers' perspectives and experiences of artificial intelligence in cardiac healthcare: A qualitative study.

Baillie L, Stewart-Lord A, Thomas N, Frings D

pubmed logopapersJan 1 2025
This study investigated perspectives and experiences of artificial intelligence (AI) developers, clinicians and patients about the use of AI-based software in cardiac healthcare. A qualitative study took place at two hospitals in England that had trialled AI-based software use in stress echocardiography, a scan that uses ultrasound to assess heart function. Semi-structured interviews were conducted with: patients (<i>n = </i>9), clinicians (<i>n = </i>16) and AI software developers (<i>n = </i>5). Data were analysed using thematic analysis. Potential benefits identified were increasing consistency and reliability through reducing human error, and greater efficiency. Concerns included over-reliance on the AI technology, and data security. Participants discussed the need for human input and empathy within healthcare, transparency about AI use, and issues around trusting AI. Participants considered AI's role as assisting diagnosis but not replacing clinician involvement. Clinicians and patients emphasised holistic diagnosis that involves more than the scan. Clinicians considered their diagnostic ability as superior and discrepancies were managed in line with clinicians' diagnoses rather than AI reports. The practicalities of using the AI software concerned image acquisition to meet AI processing requirements and workflow integration. There was positivity towards AI use, but the AI software was considered an adjunct to clinicians rather than replacing their input. Clinicians' experiences were that their diagnostic ability remained superior to the AI, and acquiring images acceptable to AI was sometimes problematic. Despite hopes for increased efficiency through AI use, clinicians struggled to identify fit with clinical workflow to bring benefit.

Radiomic Model Associated with Tumor Microenvironment Predicts Immunotherapy Response and Prognosis in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.

Sun J, Wu X, Zhang X, Huang W, Zhong X, Li X, Xue K, Liu S, Chen X, Li W, Liu X, Shen H, You J, He W, Jin Z, Yu L, Li Y, Zhang S, Zhang B

pubmed logopapersJan 1 2025
<b>Background:</b> No robust biomarkers have been identified to predict the efficacy of programmed cell death protein 1 (PD-1) inhibitors in patients with locoregionally advanced nasopharyngeal carcinoma (LANPC). We aimed to develop radiomic models using pre-immunotherapy MRI to predict the response to PD-1 inhibitors and the patient prognosis. <b>Methods:</b> This study included 246 LANPC patients (training cohort, <i>n</i> = 117; external test cohort, <i>n</i> = 129) from 10 centers. The best-performing machine learning classifier was employed to create the radiomic models. A combined model was constructed by integrating clinical and radiomic data. A radiomic interpretability study was performed with whole slide images (WSIs) stained with hematoxylin and eosin (H&E) and immunohistochemistry (IHC). A total of 150 patient-level nuclear morphological features (NMFs) and 12 cell spatial distribution features (CSDFs) were extracted from WSIs. The correlation between the radiomic and pathological features was assessed using Spearman correlation analysis. <b>Results:</b> The radiomic model outperformed the clinical and combined models in predicting treatment response (area under the curve: 0.760 vs. 0.559 vs. 0.652). For overall survival estimation, the combined model performed comparably to the radiomic model but outperformed the clinical model (concordance index: 0.858 vs. 0.812 vs. 0.664). Six treatment response-related radiomic features correlated with 50 H&E-derived (146 pairs, |<i>r</i>|= 0.31 to 0.46) and 2 to 26 IHC-derived NMF, particularly for CD45RO (69 pairs, |<i>r</i>|= 0.31 to 0.48), CD8 (84, |<i>r</i>|= 0.30 to 0.59), PD-L1 (73, |<i>r</i>|= 0.32 to 0.48), and CD163 (53, |<i>r</i>| = 0.32 to 0.59). Eight prognostic radiomic features correlated with 11 H&E-derived (16 pairs, |<i>r</i>|= 0.48 to 0.61) and 2 to 31 IHC-derived NMF, particularly for PD-L1 (80 pairs, |<i>r</i>|= 0.44 to 0.64), CD45RO (65, |<i>r</i>|= 0.42 to 0.67), CD19 (35, |<i>r</i>|= 0.44 to 0.58), CD66b (61, |<i>r</i>| = 0.42 to 0.67), and FOXP3 (21, |<i>r</i>| = 0.41 to 0.71). In contrast, fewer CSDFs exhibited correlations with specific radiomic features. <b>Conclusion:</b> The radiomic model and combined model are feasible in predicting immunotherapy response and outcomes in LANPC patients. The radiology-pathology correlation suggests a potential biological basis for the predictive models.

Enhancing Disease Detection in Radiology Reports Through Fine-tuning Lightweight LLM on Weak Labels.

Wei Y, Wang X, Ong H, Zhou Y, Flanders A, Shih G, Peng Y

pubmed logopapersJan 1 2025
Despite significant progress in applying large language models (LLMs) to the medical domain, several limitations still prevent them from practical applications. Among these are the constraints on model size and the lack of cohort-specific labeled datasets. In this work, we investigated the potential of improving a lightweight LLM, such as Llama 3.1-8B, through fine-tuning with datasets using synthetic labels. Two tasks are jointly trained by combining their respective instruction datasets. When the quality of the task-specific synthetic labels is relatively high (e.g., generated by GPT4-o), Llama 3.1-8B achieves satisfactory performance on the open-ended disease detection task, with a micro F1 score of 0.91. Conversely, when the quality of the task-relevant synthetic labels is relatively low (e.g., from the MIMIC-CXR dataset), fine-tuned Llama 3.1-8B is able to surpass its noisy teacher labels (micro F1 score of 0.67 v.s. 0.63) when calibrated against curated labels, indicating the strong inherent underlying capability of the model. These findings demonstrate the potential offine-tuning LLMs with synthetic labels, offering a promising direction for future research on LLM specialization in the medical domain.
Page 340 of 3423413 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.