Sort by:
Page 294 of 3343333 results

Multiple deep learning models based on MRI images in discriminating glioblastoma from solitary brain metastases: a multicentre study.

Kong C, Yan D, Liu K, Yin Y, Ma C

pubmed logopapersMay 19 2025
Development of a deep learning model for accurate preoperative identification of glioblastoma and solitary brain metastases by combining multi-centre and multi-sequence magnetic resonance images and comparison of the performance of different deep learning models. Clinical data and MR images of a total of 236 patients with pathologically confirmed glioblastoma and single brain metastases were retrospectively collected from January 2019 to May 2024 at Provincial Hospital of Shandong First Medical University, and the data were randomly divided into a training set and a test set according to the ratio of 8:2, in which the training set contained 197 cases and the test set contained 39 cases; the images were preprocessed and labeled with the tumor regions. The images were pre-processed and labeled with tumor regions, and different MRI sequences were input individually or in combination to train the deep learning model 3D ResNet-18, and the optimal sequence combinations were obtained by five-fold cross-validation enhancement of the data inputs and training of the deep learning models 3D Vision Transformer (3D Vit), 3D DenseNet, and 3D VGG; the working characteristic curves (ROCs) of subjects were plotted, and the area under the curve (AUC) was calculated. The area under the curve (AUC), accuracy, precision, recall and F1 score were used to evaluate the discriminative performance of the models. In addition, 48 patients with glioblastoma and single brain metastases from January 2020 to December 2022 were collected from the Affiliated Cancer Hospital of Shandong First Medical University as an external test set to compare the discriminative performance, robustness and generalization ability of the four deep learning models. In the comparison of the discriminative effect of different MRI sequences, the three sequence combinations of T1-CE, T2, and T2-Flair gained discriminative effect, with the accuracy and AUC values of 0.8718 and 0.9305, respectively; after the four deep learning models were inputted into the aforementioned sequence combinations, the accuracy and AUC of the external validation of the 3D ResNet-18 model were 0.8125, respectively, 0.8899, all of which are the highest among all models. A combination of multi-sequence MR images and a deep learning model can efficiently identify glioblastoma and solitary brain metastases preoperatively, and the deep learning model 3D ResNet-18 has the highest efficacy in identifying the two types of tumours.

Detection of carotid artery calcifications using artificial intelligence in dental radiographs: a systematic review and meta-analysis.

Arzani S, Soltani P, Karimi A, Yazdi M, Ayoub A, Khurshid Z, Galderisi D, Devlin H

pubmed logopapersMay 19 2025
Carotid artery calcifications are important markers of cardiovascular health, often associated with atherosclerosis and a higher risk of stroke. Recent research shows that dental radiographs can help identify these calcifications, allowing for earlier detection of vascular diseases. Advances in artificial intelligence (AI) have improved the ability to detect carotid calcifications in dental images, making it a useful screening tool. This systematic review and meta-analysis aimed to evaluate how accurately AI methods can identify carotid calcifications in dental radiographs. A systematic search in databases including PubMed, Scopus, Embase, and Web of Science for studies on AI algorithms used to detect carotid calcifications in dental radiographs was conducted. Two independent reviewers collected data on study aims, imaging techniques, and statistical measures such as sensitivity and specificity. A meta-analysis using random effects was performed, and the risk of bias was evaluated with the QUADAS-2 tool. Nine studies were suitable for qualitative analysis, while five provided data for quantitative analysis. These studies assessed AI algorithms using cone beam computed tomography (n = 3) and panoramic radiographs (n = 6). The sensitivity of the included studies ranged from 0.67 to 0.98 and specificity varied between 0.85 and 0.99. The overall effect size, by considering only one AI method in each study, resulted in a sensitivity of 0.92 [95% CI 0.81 to 0.97] and a specificity of 0.96 [95% CI 0.92 to 0.97]. The high sensitivity and specificity indicate that AI methods could be effective screening tools, enhancing the early detection of stroke and related cardiovascular risks. Not applicable.

Preoperative DBT-based radiomics for predicting axillary lymph node metastasis in breast cancer: a multi-center study.

He S, Deng B, Chen J, Li J, Wang X, Li G, Long S, Wan J, Zhang Y

pubmed logopapersMay 19 2025
In the prognosis of breast cancer, the status of axillary lymph nodes (ALN) is critically important. While traditional axillary lymph node dissection (ALND) provides comprehensive information, it is associated with high risks. Sentinel lymph node biopsy (SLND), as an alternative, is less invasive but still poses a risk of overtreatment. In recent years, digital breast tomosynthesis (DBT) technology has emerged as a new precise diagnostic tool for breast cancer, leveraging its high detection capability for lesions obscured by dense glandular tissue. This multi-center study evaluates the feasibility of preoperative DBT-based radiomics, using tumor and peritumoral features, to predict ALN metastasis in breast cancer. We retrospectively collected DBT imaging data from 536 preoperative breast cancer patients across two centers. Specifically, 390 cases were from one Hospital, and 146 cases were from another Hospital. These data were assigned to internal training and external validation sets, respectively. We performed 3D region of interest (ROI) delineation on the cranio-caudal (CC) and mediolateral oblique (MLO) views of DBT images and extracted radiomic features. Using methods such as analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO), we selected radiomic features extracted from the tumor and its surrounding 3 mm, 5 mm, and 10 mm regions, and constructed a radiomic feature set. We then developed a combined model that includes the optimal radiomic features and clinical pathological factors. The performance of the combined model was evaluated using the area under the curve (AUC), and it was directly compared with the diagnostic results of radiologists. The results showed that the AUC of the radiomic features from the surrounding regions of the tumor were generally lower than those from the tumor itself. Among them, the Signature<sub>tuomor+10 mm</sub> model performed best, achieving an AUC of 0.806 using a logistic regression (LR) classifier to generate the RadScore.The nomogram incorporating both Ki67 and RadScore demonstrated a slightly higher AUC (0.813) compared to the Signature<sub>tuomor+10 mm</sub> model alone (0.806). By integrating relevant clinical information, the nomogram enhances potential clinical utility. Moreover, it outperformed radiologists' assessments in predictive accuracy, highlighting its added value in clinical decision-making. Radiomics based on DBT imaging of the tumor and surrounding regions can provide a non-invasive auxiliary tool to guide treatment strategies for ALN metastasis in breast cancer. Not applicable.

Development and validation of ultrasound-based radiomics deep learning model to identify bone erosion in rheumatoid arthritis.

Yan L, Xu J, Ye X, Lin M, Gong Y, Fang Y, Chen S

pubmed logopapersMay 19 2025
To develop and validate a deep learning radiomics fusion model (DLR) based on ultrasound (US) images to identify bone erosion in rheumatoid arthritis (RA) patients. A total of 432 patients with RA at two institutions were collected. Three hundred twelve patients from center 1 were randomly divided into a training set (N = 218) and an internal test set (N = 94) in a 7:3 ratio; meanwhile, 124 patients from center 2 were as an external test set. Radiomics (Rad) and deep learning (DL) features were extracted based on hand-crafted radiomics and deep transfer learning networks. The least absolute shrinkage and selection operator regression was employed to establish DLR fusion feature from the Rad and DL features. Subsequently, 10 machine learning algorithms were used to construct models and the final optimal model was selected. The performance of models was evaluated using receiver operating characteristic (ROC) and decision curve analysis (DCA). The diagnostic efficacy of sonographers was compared with and without the assistance of the optimal model. LR was chosen as the optimal algorithm for model construction account for superior performance (Rad/DL/DLR: area under the curve [AUC] = 0.906/0.974/0.979) in the training set. In the internal test set, DLR_LR as the final model had the highest AUC (AUC = 0.966), which was also validated in the external test set (AUC = 0.932). With the aid of DLR_LR model, the overall performance of both junior and senior sonographers improved significantly (P < 0.05), and there was no significant difference between the junior sonographer with DLR_LR model assistance and the senior sonographer without assistance (P > 0.05). DLR model based on US images is the best performer and is expected to become an important tool for identifying bone erosion in RA patients. Key Points • DLR model based on US images is the best performer in identifying BE in RA patients. • DLR model may assist the sonographers to improve the accuracy of BE evaluations.

Semiautomated segmentation of breast tumor on automatic breast ultrasound image using a large-scale model with customized modules.

Zhou Y, Ye M, Ye H, Zeng S, Shu X, Pan Y, Wu A, Liu P, Zhang G, Cai S, Chen S

pubmed logopapersMay 19 2025
To verify the capability of the Segment Anything Model for medical images in 3D (SAM-Med3D), tailored with low-rank adaptation (LoRA) strategies, in segmenting breast tumors in Automated Breast Ultrasound (ABUS) images. This retrospective study collected data from 329 patients diagnosed with breast cancer (average age 54 years). The dataset was randomly divided into training (n = 204), validation (n = 29), and test sets (n = 59). Two experienced radiologists manually annotated the regions of interest of each sample in the dataset, which served as ground truth for training and evaluating the SAM-Med3D model with additional customized modules. For semi-automatic tumor segmentation, points were randomly sampled within the lesion areas to simulate the radiologists' clicks in real-world scenarios. The segmentation performance was evaluated using the Dice coefficient. A total of 492 cases (200 from the "Tumor Detection, Segmentation, and Classification Challenge on Automated 3D Breast Ultrasound (TDSC-ABUS) 2023 challenge") were subjected to semi-automatic segmentation inference. The average Dice Similariy Coefficient (DSC) scores for the training, validation, and test sets of the Lishui dataset were 0.75, 0.78, and 0.75, respectively. The Breast Imaging Reporting and Data System (BI-RADS) categories of all samples range from BI-RADS 3 to 6, yielding an average DSC coefficient between 0.73 and 0.77. By categorizing the samples (lesion volumes ranging from 1.64 to 100.03 cm<sup>3</sup>) based on lesion size, the average DSC falls between 0.72 and 0.77.And the overall average DSC for the TDSC-ABUS 2023 challenge dataset was 0.79, with the test set achieving a sora-of-art scores of 0.79. The SAM-Med3D model with additional customized modules demonstrates good performance in semi-automatic 3D ABUS breast cancer tumor segmentation, indicating its feasibility for application in computer-aided diagnosis systems.

Development and Validation an Integrated Deep Learning Model to Assist Eosinophilic Chronic Rhinosinusitis Diagnosis: A Multicenter Study.

Li J, Mao N, Aodeng S, Zhang H, Zhu Z, Wang L, Liu Y, Qi H, Qiao H, Lin Y, Qiu Z, Yang T, Zha Y, Wang X, Wang W, Song X, Lv W

pubmed logopapersMay 19 2025
The assessment of eosinophilic chronic rhinosinusitis (eCRS) lacks accurate non-invasive preoperative prediction methods, relying primarily on invasive histopathological sections. This study aims to use computed tomography (CT) images and clinical parameters to develop an integrated deep learning model for the preoperative identification of eCRS and further explore the biological basis of its predictions. A total of 1098 patients with sinus CT images were included from two hospitals and were divided into training, internal, and external test sets. The region of interest of sinus lesions was manually outlined by an experienced radiologist. We utilized three deep learning models (3D-ResNet, 3D-Xception, and HR-Net) to extract features from CT images and calculate deep learning scores. The clinical signature and deep learning score were inputted into a support vector machine for classification. The receiver operating characteristic curve, sensitivity, specificity, and accuracy were used to evaluate the integrated deep learning model. Additionally, proteomic analysis was performed on 34 patients to explore the biological basis of the model's predictions. The area under the curve of the integrated deep learning model to predict eCRS was 0.851 (95% confidence interval [CI]: 0.77-0.93) and 0.821 (95% CI: 0.78-0.86) in the internal and external test sets. Proteomic analysis revealed that in patients predicted to be eCRS, 594 genes were dysregulated, and some of them were associated with pathways and biological processes such as chemokine signaling pathway. The proposed integrated deep learning model could effectively predict eCRS patients. This study provided a non-invasive way of identifying eCRS to facilitate personalized therapy, which will pave the way toward precision medicine for CRS.

Portable Ultrasound Bladder Volume Measurement Over Entire Volume Range Using a Deep Learning Artificial Intelligence Model in a Selected Cohort: A Proof of Principle Study.

Jeong HJ, Seol A, Lee S, Lim H, Lee M, Oh SJ

pubmed logopapersMay 19 2025
We aimed to prospectively investigate whether bladder volume measured using deep learning artificial intelligence (AI) algorithms (AI-BV) is more accurate than that measured using conventional methods (C-BV) if using a portable ultrasound bladder scanner (PUBS). Patients who underwent filling cystometry because of lower urinary tract symptoms between January 2021 and July 2022 were enrolled. Every time the bladder was filled serially with normal saline from 0 mL to maximum cystometric capacity in 50 mL increments, C-BV was measured using PUBS. Ultrasound images obtained during this process were manually annotated to define the bladder contour, which was used to build a deep learning AI model. The true bladder volume (T-BV) for each bladder volume range was compared with C-BV and AI-BV for analysis. We enrolled 250 patients (213 men and 37 women), and a deep learning AI model was established using 1912 bladder images. There was a significant difference between C-BV (205.5 ± 170.8 mL) and T-BV (190.5 ± 165.7 mL) (p = 0.001), but no significant difference between AI-BV (197.0 ± 161.1 mL) and T-BV (190.5 ± 165.7 mL) (p = 0.081). In bladder volume ranges of 101-150, 151-200, and 201-300 mL, there were significant differences in the percentage of volume differences between [C-BV and T-BV] and [AI-BV and T-BV] (p < 0.05), but no significant difference if converted to absolute values (p > 0.05). C-BV (R<sup>2</sup> = 0.91, p < 0.001) and AI-BV (R<sup>2</sup> = 0.90, p < 0.001) were highly correlated with T-BV. The mean difference between AI-BV and T-BV (6.5 ± 50.4) was significantly smaller than that between C-BV and T-BV (15.0 ± 50.9) (p = 0.001). Following image pre-processing, deep learning AI-BV more accurately estimated true BV than conventional methods in this selected cohort on internal validation. Determination of the clinical relevance of these findings and performance in external cohorts requires further study. The clinical trial was conducted using an approved product for its approved indication, so approval from the Ministry of Food and Drug Safety (MFDS) was not required. Therefore, there is no clinical trial registration number.

Federated Learning for Renal Tumor Segmentation and Classification on Multi-Center MRI Dataset.

Nguyen DT, Imami M, Zhao LM, Wu J, Borhani A, Mohseni A, Khunte M, Zhong Z, Shi V, Yao S, Wang Y, Loizou N, Silva AC, Zhang PJ, Zhang Z, Jiao Z, Kamel I, Liao WH, Bai H

pubmed logopapersMay 19 2025
Deep learning (DL) models for accurate renal tumor characterization may benefit from multi-center datasets for improved generalizability; however, data-sharing constraints necessitate privacy-preserving solutions like federated learning (FL). To assess the performance and reliability of FL for renal tumor segmentation and classification in multi-institutional MRI datasets. Retrospective multi-center study. A total of 987 patients (403 female) from six hospitals were included for analysis. 73% (723/987) had malignant renal tumors, primarily clear cell carcinoma (n = 509). Patients were split into training (n = 785), validation (n = 104), and test (n = 99) sets, stratified across three simulated institutions. MRI was performed at 1.5 T and 3 T using T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI) sequences. FL and non-FL approaches used nnU-Net for tumor segmentation and ResNet for its classification. FL-trained models across three simulated institutional clients with central weight aggregation, while the non-FL approach used centralized training on the full dataset. Segmentation was evaluated using Dice coefficients, and classification between malignant and benign lesions was assessed using accuracy, sensitivity, specificity, and area under the curves (AUCs). FL and non-FL performance was compared using the Wilcoxon test for segmentation Dice and Delong's test for AUC (p < 0.05). No significant difference was observed between FL and non-FL models in segmentation (Dice: 0.43 vs. 0.45, p = 0.202) or classification (AUC: 0.69 vs. 0.64, p = 0.959) on the test set. For classification, no significant difference was observed between the models in accuracy (p = 0.912), sensitivity (p = 0.862), or specificity (p = 0.847) on the test set. FL demonstrated comparable performance to non-FL approaches in renal tumor segmentation and classification, supporting its potential as a privacy-preserving alternative for multi-institutional DL models. 4. Stage 2.

Transformer model based on Sonazoid contrast-enhanced ultrasound for microvascular invasion prediction in hepatocellular carcinoma.

Qin Q, Pang J, Li J, Gao R, Wen R, Wu Y, Liang L, Que Q, Liu C, Peng J, Lv Y, He Y, Lin P, Yang H

pubmed logopapersMay 19 2025
Microvascular invasion (MVI) is strongly associated with the prognosis of patients with hepatocellular carcinoma (HCC). To evaluate the value of Transformer models with Sonazoid contrast-enhanced ultrasound (CEUS) in the preoperative prediction of MVI. This retrospective study included 164 HCC patients. Deep learning features and radiomic features were extracted from arterial and Kupffer phase images, alongside the collection of clinicopathological parameters. Normality was assessed using the Shapiro-Wilk test. The Mann‒Whitney U-test and least absolute shrinkage and selection operator algorithm were applied to screen features. Transformer, radiomic, and clinical prediction models for MVI were constructed with logistic regression. Repeated random splits followed a 7:3 ratio, with model performance evaluated over 50 iterations. The area under the receiver operating characteristic curve (AUC, 95% confidence interval [CI]), sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), decision curve, and calibration curve were used to evaluate the performance of the models. The DeLong test was applied to compare performance between models. The Bonferroni method was used to control type I error rates arising from multiple comparisons. A two-sided p-value of < 0.05 was considered statistically significant. In the training set, the diagnostic performance of the arterial-phase Transformer (AT) and Kupffer-phase Transformer (KT) models were better than that of the radiomic and clinical (Clin) models (p < 0.0001). In the validation set, both the AT and KT models outperformed the radiomic and Clin models in terms of diagnostic performance (p < 0.05). The AUC (95% CI) for the AT model was 0.821 (0.72-0.925) with an accuracy of 80.0%, and the KT model was 0.859 (0.766-0.977) with an accuracy of 70.0%. Logistic regression analysis indicated that tumor size (p = 0.016) and alpha-fetoprotein (AFP) (p = 0.046) were independent predictors of MVI. Transformer models using Sonazoid CEUS have potential for effectively identifying MVI-positive patients preoperatively.

An overview of artificial intelligence and machine learning in shoulder surgery.

Cho SH, Kim YS

pubmed logopapersMay 19 2025
Machine learning (ML), a subset of artificial intelligence (AI), utilizes advanced algorithms to learn patterns from data, enabling accurate predictions and decision-making without explicit programming. In orthopedic surgery, ML is transforming clinical practice, particularly in shoulder arthroplasty and rotator cuff tears (RCTs) management. This review explores the fundamental paradigms of ML, including supervised, unsupervised, and reinforcement learning, alongside key algorithms such as XGBoost, neural networks, and generative adversarial networks. In shoulder arthroplasty, ML accurately predicts postoperative outcomes, complications, and implant selection, facilitating personalized surgical planning and cost optimization. Predictive models, including ensemble learning methods, achieve over 90% accuracy in forecasting complications, while neural networks enhance surgical precision through AI-assisted navigation. In RCTs treatment, ML enhances diagnostic accuracy using deep learning models on magnetic resonance imaging and ultrasound, achieving area under the curve values exceeding 0.90. ML models also predict tear reparability with 85% accuracy and postoperative functional outcomes, including range of motion and patient-reported outcomes. Despite remarkable advancements, challenges such as data variability, model interpretability, and integration into clinical workflows persist. Future directions involve federated learning for robust model generalization and explainable AI to enhance transparency. ML continues to revolutionize orthopedic care by providing data-driven, personalized treatment strategies and optimizing surgical outcomes.
Page 294 of 3343333 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.