Sort by:
Page 292 of 6596585 results

Koleilat T, Asgariandehkordi H, Rivaz H, Xiao Y

pubmed logopapersAug 7 2025
Segmentation of anatomical structures and pathologies in medical images is essential for modern disease diagnosis, clinical research, and treatment planning. While significant advancements have been made in deep learning-based segmentation techniques, many of these methods still suffer from limitations in data efficiency, generalizability, and interactivity. As a result, developing robust segmentation methods that require fewer labeled datasets remains a critical challenge in medical image analysis. Recently, the introduction of foundation models like CLIP and Segment-Anything-Model (SAM), with robust cross-domain representations, has paved the way for interactive and universal image segmentation. However, further exploration of these models for data-efficient segmentation in medical imaging is an active field of research. In this paper, we introduce MedCLIP-SAMv2, a novel framework that integrates the CLIP and SAM models to perform segmentation on clinical scans using text prompts, in both zero-shot and weakly supervised settings. Our approach includes fine-tuning the BiomedCLIP model with a new Decoupled Hard Negative Noise Contrastive Estimation (DHN-NCE) loss, and leveraging the Multi-modal Information Bottleneck (M2IB) to create visual prompts for generating segmentation masks with SAM in the zero-shot setting. We also investigate using zero-shot segmentation labels in a weakly supervised paradigm to enhance segmentation quality further. Extensive validation across four diverse segmentation tasks and medical imaging modalities (breast tumor ultrasound, brain tumor MRI, lung X-ray, and lung CT) demonstrates the high accuracy of our proposed framework. Our code is available at https://github.com/HealthX-Lab/MedCLIP-SAMv2.

Salam A, Naznine M, Chowdhury MEH, Agzamkhodjaev S, Tekin A, Vallasciani S, Ramírez-Velázquez E, Abbas TO

pubmed logopapersAug 7 2025
To develop and evaluate a deep learning framework for automatic kidney and fluid segmentation in renal ultrasound images, aiming to enhance diagnostic accuracy and reduce variability in hydronephrosis assessment. A dataset of 1,731 renal ultrasound images, annotated by four experienced urologists, was used for model training and evaluation. The proposed framework integrates a DenseNet201 backbone, Feature Pyramid Network (FPN), and Self-Organizing Neural Network (SelfONN) layers to enable multi-scale feature extraction and improve spatial precision. Several architectures were tested under identical conditions to ensure fair comparison. Segmentation performance was assessed using standard metrics, including Dice coefficient, precision, and recall. The framework also supported hydronephrosis classification using the fluid-to-kidney area ratio, with a threshold of 0.213 derived from prior literature. The model achieved strong segmentation performance for kidneys (Dice: 0.92, precision: 0.93, recall: 0.91) and fluid regions (Dice: 0.89, precision: 0.90, recall: 0.88), outperforming baseline methods. The classification accuracy for detecting hydronephrosis reached 94%, based on the computed fluid-to-kidney ratio. Performance was consistent across varied image qualities, reflecting the robustness of the overall architecture. This study presents an automated, objective pipeline for analyzing renal ultrasound images. The proposed framework supports high segmentation accuracy and reliable classification, facilitating standardized and reproducible hydronephrosis assessment. Future work will focus on model optimization and incorporating explainable AI to enhance clinical integration.

Treglia M, La Russa R, Napoletano G, Ghamlouch A, Del Duca F, Treves B, Frati P, Maiese A

pubmed logopapersAug 7 2025
In recent years, Artificial Intelligence (AI) has gained prominence as a robust tool for clinical decision-making and diagnostics, owing to its capacity to process and analyze large datasets with high accuracy. More specifically, Deep Learning, and its subclasses, have shown significant potential in image processing, including medical imaging and histological analysis. In forensic pathology, AI has been employed for the interpretation of histopathological data, identifying conditions such as myocardial infarction, traumatic injuries, and heart rhythm abnormalities. This review aims to highlight key advances in AI's role, particularly machine learning (ML) and deep learning (DL) techniques, in forensic neuropathology, with a focus on its ability to interpret instrumental and histopathological data to support professional diagnostics. A systematic review of the literature regarding applications of Artificial Intelligence in forensic neuropathology was carried out according to the Preferred Reporting Item for Systematic Review (PRISMA) standards. We selected 34 articles regarding the main applications of AI in this field, dividing them into two categories: those addressing traumatic brain injury (TBI), including intracranial hemorrhage or cerebral microbleeds, and those focusing on epilepsy and SUDEP, including brain disorders and central nervous system neoplasms capable of inducing seizure activity. In both cases, the application of AI techniques demonstrated promising results in the forensic investigation of cerebral pathology, providing a valuable computer-assisted diagnostic tool to aid in post-mortem computed tomography (PMCT) assessments of cause of death and histopathological analyses. In conclusion, this paper presents a comprehensive overview of the key neuropathology areas where the application of artificial intelligence can be valuable in investigating causes of death.

Hämäläinen M, Sormaala M, Kaseva T, Salli E, Savolainen S, Kangasniemi M

pubmed logopapersAug 7 2025
To investigate feasibility of a method which combines segmenting convolutional neural networks (CNN) for the automated detection of ganglion cysts in 2D MRI of the wrist. The study serves as proof-of-concept, demonstrating a method to decrease false positives and offering an efficient solution for ganglia detection. We retrospectively analyzed 58 MRI studies with wrist ganglia, each including 2D axial, sagittal, and coronal series. Manual segmentations were performed by a radiologist and used to train CNNs for automatic segmentation of each orthogonal series. Predictions were fused into a single 3D volume using a proposed prediction fusion method. Performance was evaluated over all studies using six-fold cross-validation, comparing method variations with metrics including true positive rate, number of false positives, and F-score metrics. The proposed method reached mean TPR of 0.57, mean FP of 0.4 and mean F-score of 0.53. Fusion of series predictions decreased the number of false positives significantly but also decreased TPR values. CNNs can detect ganglion cysts in wrist MRI. The number of false positives can be decreased by a method of prediction fusion from multiple CNNs.

Herold A, Mercaldo ND, Anderson MA, Mojtahed A, Kilcoyne A, Lo WC, Sellers RM, Clifford B, Nickel MD, Nakrour N, Huang SY, Tsai LL, Catalano OA, Harisinghani MG

pubmed logopapersAug 7 2025
To validate a deep learning (DL) reconstruction technique for faster post-contrast enhanced coronal Volume Interpolated Breath-hold Examination (VIBE) sequences and assess its image quality compared to conventionally acquired coronal VIBE sequences. This prospective study included 151 patients undergoing clinically indicated upper abdominal MRI acquired on 3 T scanners. Two coronal T1 fat-suppressed VIBE sequences were acquired: a DL-reconstructed sequence (VIBE<sub>DL</sub>) and a standard sequence (VIBE<sub>SD</sub>). Three radiologists independently evaluated six image quality parameters: overall image quality, perceived signal-to-noise ratio, severity of artifacts, liver edge sharpness, liver vessel sharpness, and lesion conspicuity, using a 4-point Likert scale. Inter-reader agreement was assessed using Gwet's AC2. Ordinal mixed-effects regression models were used to compare VIBE<sub>DL</sub> and VIBE<sub>SD</sub>. Acquisition times were 10.2 s for VIBE<sub>DL</sub> compared to 22.3 s for VIBE<sub>SD</sub>. VIBE<sub>DL</sub> demonstrated superior overall image quality (OR 1.95, 95 % CI: 1.44-2.65, p < 0.001), reduced image noise (OR 3.02, 95 % CI: 2.26-4.05, p < 0.001), enhanced liver edge sharpness (OR 3.68, 95 % CI: 2.63-5.15, p < 0.001), improved liver vessel sharpness (OR 4.43, 95 % CI: 3.13-6.27, p < 0.001), and better lesion conspicuity (OR 9.03, 95 % CI: 6.34-12.85, p < 0.001) compared to VIBE<sub>SD</sub>. However, VIBE<sub>DL</sub> showed increased severity of peripheral artifacts (OR 0.13, p < 0.001). VIBE<sub>DL</sub> detected 137/138 (99.3 %) focal liver lesions, while VIBE<sub>SD</sub> detected 131/138 (94.9 %). Inter-reader agreement ranged from good to very good for both sequences. The DL-reconstructed VIBE sequence significantly outperformed the standard breath-hold VIBE in image quality and lesion detection, while reducing acquisition time. This technique shows promise for enhancing the diagnostic capabilities of contrast-enhanced abdominal MRI.

Xu S, Chen Y, Zhang X, Sun F, Chen S, Ou Y, Luo C

pubmed logopapersAug 7 2025
Due to the inductive bias of convolutions, CNNs perform hierarchical feature extraction efficiently in the field of medical image segmentation. However, the local correlation assumption of inductive bias limits the ability of convolutions to focus on global information, which has led to the performance of Transformer-based methods surpassing that of CNNs in some segmentation tasks in recent years. Although combining with Transformers can solve this problem, it also introduces computational complexity and considerable parameters. In addition, narrowing the encoder-decoder semantic gap for high-quality mask generation is a key challenge, addressed in recent works through feature aggregation from different skip connections. However, this often results in semantic mismatches and additional noise. In this paper, we propose a novel segmentation method, X-UNet, whose backbones employ the CFGC (Collaborative Fusion with Global Context-aware) module. The CFGC module enables multi-scale feature extraction and effective global context modeling. Simultaneously, we employ the CSPF (Cross Split-channel Progressive Fusion) module to progressively align and fuse features from corresponding encoder and decoder stages through channel-wise operations, offering a novel approach to feature integration. Experimental results demonstrate that X-UNet, with fewer computations and parameters, exhibits superior performance on various medical image datasets.The code and models are available on https://github.com/XSJ0410/X-UNet.

Xuanru Zhou, Cheng Li, Shuqiang Wang, Ye Li, Tao Tan, Hairong Zheng, Shanshan Wang

arxiv logopreprintAug 7 2025
Generative artificial intelligence (AI) is rapidly transforming medical imaging by enabling capabilities such as data synthesis, image enhancement, modality translation, and spatiotemporal modeling. This review presents a comprehensive and forward-looking synthesis of recent advances in generative modeling including generative adversarial networks (GANs), variational autoencoders (VAEs), diffusion models, and emerging multimodal foundation architectures and evaluates their expanding roles across the clinical imaging continuum. We systematically examine how generative AI contributes to key stages of the imaging workflow, from acquisition and reconstruction to cross-modality synthesis, diagnostic support, and treatment planning. Emphasis is placed on both retrospective and prospective clinical scenarios, where generative models help address longstanding challenges such as data scarcity, standardization, and integration across modalities. To promote rigorous benchmarking and translational readiness, we propose a three-tiered evaluation framework encompassing pixel-level fidelity, feature-level realism, and task-level clinical relevance. We also identify critical obstacles to real-world deployment, including generalization under domain shift, hallucination risk, data privacy concerns, and regulatory hurdles. Finally, we explore the convergence of generative AI with large-scale foundation models, highlighting how this synergy may enable the next generation of scalable, reliable, and clinically integrated imaging systems. By charting technical progress and translational pathways, this review aims to guide future research and foster interdisciplinary collaboration at the intersection of AI, medicine, and biomedical engineering.

Hongli Chen, Pengcheng Fang, Yuxia Chen, Yingxuan Ren, Jing Hao, Fangfang Tang, Xiaohao Cai, Shanshan Shan, Feng Liu

arxiv logopreprintAug 7 2025
Reconstructing high-fidelity MR images from undersampled k-space data remains a challenging problem in MRI. While Mamba variants for vision tasks offer promising long-range modeling capabilities with linear-time complexity, their direct application to MRI reconstruction inherits two key limitations: (1) insensitivity to high-frequency anatomical details; and (2) reliance on redundant multi-directional scanning. To address these limitations, we introduce High-Fidelity Mamba (HiFi-Mamba), a novel dual-stream Mamba-based architecture comprising stacked W-Laplacian (WL) and HiFi-Mamba blocks. Specifically, the WL block performs fidelity-preserving spectral decoupling, producing complementary low- and high-frequency streams. This separation enables the HiFi-Mamba block to focus on low-frequency structures, enhancing global feature modeling. Concurrently, the HiFi-Mamba block selectively integrates high-frequency features through adaptive state-space modulation, preserving comprehensive spectral details. To eliminate the scanning redundancy, the HiFi-Mamba block adopts a streamlined unidirectional traversal strategy that preserves long-range modeling capability with improved computational efficiency. Extensive experiments on standard MRI reconstruction benchmarks demonstrate that HiFi-Mamba consistently outperforms state-of-the-art CNN-based, Transformer-based, and other Mamba-based models in reconstruction accuracy while maintaining a compact and efficient model design.

Zhekai Zhou, Shudong Liu, Zhaokun Zhou, Yang Liu, Qiang Yang, Yuesheng Zhu, Guibo Luo

arxiv logopreprintAug 7 2025
Federated learning (FL) is a decentralized machine learning paradigm in which multiple clients collaboratively train a shared model without sharing their local private data. However, real-world applications of FL frequently encounter challenges arising from the non-identically and independently distributed (non-IID) local datasets across participating clients, which is particularly pronounced in the field of medical imaging, where shifts in image feature distributions significantly hinder the global model's convergence and performance. To address this challenge, we propose FedMP, a novel method designed to enhance FL under non-IID scenarios. FedMP employs stochastic feature manifold completion to enrich the training space of individual client classifiers, and leverages class-prototypes to guide the alignment of feature manifolds across clients within semantically consistent subspaces, facilitating the construction of more distinct decision boundaries. We validate the effectiveness of FedMP on multiple medical imaging datasets, including those with real-world multi-center distributions, as well as on a multi-domain natural image dataset. The experimental results demonstrate that FedMP outperforms existing FL algorithms. Additionally, we analyze the impact of manifold dimensionality, communication efficiency, and privacy implications of feature exposure in our method.

Rahi, A.

medrxiv logopreprintAug 7 2025
Brain tumor classification using MRI scans is crucial for early diagnosis and treatment planning. In this study, we first train a single Convolutional Neural Network (CNN) based on VGG16 [1], achieving a strong standalone test accuracy of 99.24% on a balanced dataset of 7,023 MRI images across four classes: glioma, meningioma, pituitary, and no tumor. To further improve classification performance, we implement three ensemble strategies: stacking, soft voting, and XGBoost-based ensembling [4], each trained on individually fine-tuned models. These ensemble methods significantly enhance prediction accuracy, with XGBoost achieving a perfect 100% accuracy, and voting reaching 99.54%. Evaluation metrics such as precision, recall, and F1-score confirm the robustness of the approach. This work demonstrates the power of combining fine-tuned deep learning models [5] for highly reliable brain tumor classification enhance prediction accuracy, with XGBoost achieving a perfect 100% accuracy, and voting reaching 99.54%. Evaluation metrics such as precision, recall, and F1-score confirm the robustness of the approach. This work demonstrates the power of combining fine-tuned deep learning models for highly reliable brain tumor classification.
Page 292 of 6596585 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.