Sort by:
Page 29 of 56556 results

Hybrid-View Attention Network for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound

Zetian Feng, Juan Fu, Xuebin Zou, Hongsheng Ye, Hong Wu, Jianhua Zhou, Yi Wang

arxiv logopreprintJul 4 2025
Prostate cancer (PCa) is a leading cause of cancer-related mortality in men, and accurate identification of clinically significant PCa (csPCa) is critical for timely intervention. Transrectal ultrasound (TRUS) is widely used for prostate biopsy; however, its low contrast and anisotropic spatial resolution pose diagnostic challenges. To address these limitations, we propose a novel hybrid-view attention (HVA) network for csPCa classification in 3D TRUS that leverages complementary information from transverse and sagittal views. Our approach integrates a CNN-transformer hybrid architecture, where convolutional layers extract fine-grained local features and transformer-based HVA models global dependencies. Specifically, the HVA comprises intra-view attention to refine features within a single view and cross-view attention to incorporate complementary information across views. Furthermore, a hybrid-view adaptive fusion module dynamically aggregates features along both channel and spatial dimensions, enhancing the overall representation. Experiments are conducted on an in-house dataset containing 590 subjects who underwent prostate biopsy. Comparative and ablation results prove the efficacy of our method. The code is available at https://github.com/mock1ngbrd/HVAN.

Clinical obstacles to machine-learning POCUS adoption and system-wide AI implementation (The COMPASS-AI survey).

Wong A, Roslan NL, McDonald R, Noor J, Hutchings S, D'Costa P, Via G, Corradi F

pubmed logopapersJul 3 2025
Point-of-care ultrasound (POCUS) has become indispensable in various medical specialties. The integration of artificial intelligence (AI) and machine learning (ML) holds significant promise to enhance POCUS capabilities further. However, a comprehensive understanding of healthcare professionals' perspectives on this integration is lacking. This study aimed to investigate the global perceptions, familiarity, and adoption of AI in POCUS among healthcare professionals. An international, web-based survey was conducted among healthcare professionals involved in POCUS. The survey instrument included sections on demographics, familiarity with AI, perceived utility, barriers (technological, training, trust, workflow, legal/ethical), and overall perceptions regarding AI-assisted POCUS. The data was analysed by descriptive statistics, frequency distributions, and group comparisons (using chi-square/Fisher's exact test and t-test/Mann-Whitney U test). This study surveyed 1154 healthcare professionals on perceived barriers to implementing AI in point-of-care ultrasound. Despite general enthusiasm, with 81.1% of respondents expressing agreement or strong agreement, significant barriers were identified. The most frequently cited single greatest barriers were Training & Education (27.1%) and Clinical Validation & Evidence (17.5%). Analysis also revealed that perceptions of specific barriers vary significantly based on demographic factors, including region of practice, medical specialty, and years of healthcare experience. This novel global survey provides critical insights into the perceptions and adoption of AI in POCUS. Findings highlight considerable enthusiasm alongside crucial challenges, primarily concerning training, validation, guidelines, and support. Addressing these barriers is essential for the responsible and effective implementation of AI in POCUS.

3D Heart Reconstruction from Sparse Pose-agnostic 2D Echocardiographic Slices

Zhurong Chen, Jinhua Chen, Wei Zhuo, Wufeng Xue, Dong Ni

arxiv logopreprintJul 3 2025
Echocardiography (echo) plays an indispensable role in the clinical practice of heart diseases. However, ultrasound imaging typically provides only two-dimensional (2D) cross-sectional images from a few specific views, making it challenging to interpret and inaccurate for estimation of clinical parameters like the volume of left ventricle (LV). 3D ultrasound imaging provides an alternative for 3D quantification, but is still limited by the low spatial and temporal resolution and the highly demanding manual delineation. To address these challenges, we propose an innovative framework for reconstructing personalized 3D heart anatomy from 2D echo slices that are frequently used in clinical practice. Specifically, a novel 3D reconstruction pipeline is designed, which alternatively optimizes between the 3D pose estimation of these 2D slices and the 3D integration of these slices using an implicit neural network, progressively transforming a prior 3D heart shape into a personalized 3D heart model. We validate the method with two datasets. When six planes are used, the reconstructed 3D heart can lead to a significant improvement for LV volume estimation over the bi-plane method (error in percent: 1.98\% VS. 20.24\%). In addition, the whole reconstruction framework makes even an important breakthrough that can estimate RV volume from 2D echo slices (with an error of 5.75\% ). This study provides a new way for personalized 3D structure and function analysis from cardiac ultrasound and is of great potential in clinical practice.

De-speckling of medical ultrasound image using metric-optimized knowledge distillation.

Khalifa M, Hamza HM, Hosny KM

pubmed logopapersJul 3 2025
Ultrasound imaging provides real-time views of internal organs, which are essential for accurate diagnosis and treatment. However, speckle noise, caused by wave interactions with tissues, creates a grainy texture that hides crucial details. This noise varies with image intensity, which limits the effectiveness of traditional denoising methods. We introduce the Metric-Optimized Knowledge Distillation (MK) model, a deep-learning approach that utilizes Knowledge Distillation (KD) for denoising ultrasound images. Our method transfers knowledge from a high-performing teacher network to a smaller student network designed for this task. By leveraging KD, the model removes speckle noise while preserving key anatomical details needed for accurate diagnosis. A key innovation of our paper is the metric-guided training strategy. We achieve this by repeatedly computing evaluation metrics used to assess our model. Incorporating them into the loss function enables the model to reduce noise and enhance image quality optimally. We evaluate our proposed method against state-of-the-art despeckling techniques, including DNCNN and other recent models. The results demonstrate that our approach performs superior noise reduction and image quality preservation, making it a valuable tool for enhancing the diagnostic utility of ultrasound images.

Development and validation of a deep learning ultrasound radiomics model for predicting drug resistance in lymph node tuberculosis a multicenter study.

Zhang X, Dong Z, Li H, Cheng Y, Tang W, Ni T, Zhang Y, Ai Q, Yang G

pubmed logopapersJul 2 2025
To develop and validate an ensemble machine learning ultrasound radiomics model for predicting drug resistance in lymph node tuberculosis (LNTB). This multicenter study retrospectively included 234 cervical LNTB patients from one center, randomly divided into training (70%) and internal validation (30%) cohorts. Radiomic features were extracted from ultrasound images, and an L1-based method was used for feature selection. A predictive model combining ensemble machine learning and AdaBoost algorithms was developed to predict drug resistance. Model performance was assessed using independent external test sets (Test A and Test B) from two other centres, with metrics including AUC, accuracy, precision, recall, F1 score, and decision curve analysis. Of the 851 radiometric features extracted, 161 were selected for the model. The model achieved AUCs of 0.998 (95% CI: 0.996-0.999), 0.798 (95% CI: 0.692-0.904), 0.846 (95% CI: 0.700-0.992), and 0.831 (95% CI: 0.688-0.974) in training, internal validation, and external test sets A and B, respectively. The decision curve analysis showed a substantial net benefit across a threshold probability range of 0.38 to 0.57. The LNTB resistance prediction model developed demonstrated high diagnostic efficacy in both internal and external validation. Radiomics, through the application of ensemble machine learning algorithms, provides new insights into drug resistance mechanisms and offers potential strategies for more effective patient treatment. Lymph node tuberculosis; Drug resistance; Ultrasound; Radiomics; Machine learning.

Artificial intelligence-assisted endobronchial ultrasound for differentiating between benign and malignant thoracic lymph nodes: a meta-analysis.

Tang F, Zha XK, Ye W, Wang YM, Wu YF, Wang LN, Lyu LP, Lyu XM

pubmed logopapersJul 2 2025
Endobronchial ultrasound (EBUS) is a widely used imaging modality for evaluating thoracic lymph nodes (LNs), particularly in the staging of lung cancer. Artificial intelligence (AI)-assisted EBUS has emerged as a promising tool to enhance diagnostic accuracy. However, its effectiveness in differentiating benign from malignant thoracic LNs remains uncertain. This meta-analysis aimed to evaluate the diagnostic performance of AI-assisted EBUS compared to the pathological reference standards. A systematic search was conducted across PubMed, Embase, and Web of Science for studies assessing AI-assisted EBUS in differentiating benign and malignant thoracic LNs. The reference standard included pathological confirmation via EBUS-guided transbronchial needle aspiration, surgical resection, or other histological/cytological validation methods. Sensitivity, specificity, diagnostic likelihood ratios, and diagnostic odds ratio (OR) were pooled using a random-effects model. The area under the receiver operating characteristic curve (AUROC) was summarized to evaluate diagnostic accuracy. Subgroup analyses were conducted by study design, lymph node location, and AI model type. Twelve studies with a total of 6,090 thoracic LNs were included. AI-assisted EBUS showed a pooled sensitivity of 0.75 (95% confidence interval [CI]: 0.60-0.86, I² = 97%) and specificity of 0.88 (95% CI: 0.83-0.92, I² = 96%). The positive and negative likelihood ratios were 6.34 (95% CI: 4.41-9.08) and 0.28 (95% CI: 0.17-0.47), respectively. The pooled diagnostic OR was 22.38 (95% CI: 11.03-45.38), and the AUROC was 0.90 (95% CI: 0.88-0.93). The subgroup analysis showed higher sensitivity but lower specificity in retrospective studies compared to prospective ones (sensitivity: 0.87 vs. 0.42; specificity: 0.80 vs. 0.93; both p < 0.001). No significant differences were found by lymph node location or AI model type. AI-assisted EBUS shows promise in differentiating benign from malignant thoracic LNs, particularly those with high specificity. However, substantial heterogeneity and moderate sensitivity highlight the need for cautious interpretation and further validation. PROSPERO CRD42025637964.

Multimodal nomogram integrating deep learning radiomics and hemodynamic parameters for early prediction of post-craniotomy intracranial hypertension.

Fu Z, Wang J, Shen W, Wu Y, Zhang J, Liu Y, Wang C, Shen Y, Zhu Y, Zhang W, Lv C, Peng L

pubmed logopapersJul 2 2025
To evaluate the effectiveness of deep learning radiomics nomogram in distinguishing early intracranial hypertension (IH) following primary decompressive craniectomy (DC) in patients with severe traumatic brain injury (TBI) and to demonstrate its potential clinical value as a noninvasive tool for guiding timely intervention and improving patient outcomes. This study included 238 patients with severe TBI (training cohort: n = 166; testing cohort: n = 72). Postoperative ultrasound images of the optic nerve sheath (ONS) and Spectral doppler imaging of middle cerebral artery (MCASDI) were obtained at 6 and 18 h after DC. Patients were grouped according to threshold values of 15 mmHg and 20 mmHg based on invasive intracranial pressure (ICPi) measurements. Clinical-semantic features were collected, and radiomics features were extracted from ONS images, and Additionally, deep transfer learning (DTL) features were generated using RseNet101. Predictive models were developed using the Light Gradient Boosting Machine (light GBM) machine learning algorithm. Clinical-ultrasound variables were incorporated into the model through univariate and multivariate logistic regression. A combined nomogram was developed by integrating DLR (deep learning radiomics) features with clinical-ultrasound variables, and its diagnostic performance over different thresholds was evaluated using Receiver Operating Characteristic (ROC) curve analysis and decision curve analysis (DCA). The nomogram model demonstrated superior performance over the clinical model at both 15 mmHg and 20 mmHg thresholds. For 15 mmHg, the AUC was 0.974 (95% confidence interval [CI]: 0.953-0.995) in the training cohort and 0.919 (95% CI: 0.845-0.993) in the testing cohort. For 20 mmHg, the AUC was 0.968 (95% CI: 0.944-0.993) in the training cohort and 0.889 (95% CI: 0.806-0.972) in the testing cohort. DCA curves showed net clinical benefit across all models. Among DLR models based on ONS, MCASDI, or their pre-fusion, the ONS-based model performed best in the testing cohorts. The nomogram model, incorporating clinical-semantic features, radiomics, and DTL features, exhibited promising performance in predicting early IH in post-DC patients. It shows promise for enhancing non-invasive ICP monitoring and supporting individualized therapeutic strategies.

SPACE: Subregion Perfusion Analysis for Comprehensive Evaluation of Breast Tumor Using Contrast-Enhanced Ultrasound-A Retrospective and Prospective Multicenter Cohort Study.

Fu Y, Chen J, Chen Y, Lin Z, Ye L, Ye D, Gao F, Zhang C, Huang P

pubmed logopapersJul 2 2025
To develop a dynamic contrast-enhanced ultrasound (CEUS)-based method for segmenting tumor perfusion subregions, quantifying tumor heterogeneity, and constructing models for distinguishing benign from malignant breast tumors. This retrospective-prospective cohort study analyzed CEUS videos of patients with breast tumors from four academic medical centers between September 2015 and October 2024. Pixel-based time-intensity curve (TIC) perfusion variables were extracted, followed by the generation of perfusion heterogeneity maps through cluster analysis. A combined diagnostic model incorporating clinical variables, subregion percentages, and radiomics scores was developed, and subsequently, a nomogram based on this model was constructed for clinical application. A total of 339 participants were included in this bidirectional study. Retrospective data included 233 tumors divided into training and test sets. The prospective data comprised 106 tumors as an independent test set. Subregion analysis revealed Subregion 2 dominated benign tumors, while Subregion 3 was prevalent in malignant tumors. Among 59 machine-learning models, Elastic Net (ENET) (α = 0.7) performed best. Age and subregion radiomics scores were independent risk factors. The combined model achieved area under the curve (AUC) values of 0.93, 0.82, and 0.90 in the training, retrospective, and prospective test sets, respectively. The proposed CEUS-based method enhances visualization and quantification of tumor perfusion dynamics, significantly improving the diagnostic accuracy for breast tumors.
Page 29 of 56556 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.