Sort by:
Page 29 of 45448 results

Prediction of mammographic breast density based on clinical breast ultrasound images using deep learning: a retrospective analysis.

Bunnell A, Valdez D, Wolfgruber TK, Quon B, Hung K, Hernandez BY, Seto TB, Killeen J, Miyoshi M, Sadowski P, Shepherd JA

pubmed logopapersJun 1 2025
Breast density, as derived from mammographic images and defined by the Breast Imaging Reporting & Data System (BI-RADS), is one of the strongest risk factors for breast cancer. Breast ultrasound is an alternative breast cancer screening modality, particularly useful in low-resource, rural contexts. To date, breast ultrasound has not been used to inform risk models that need breast density. The purpose of this study is to explore the use of artificial intelligence (AI) to predict BI-RADS breast density category from clinical breast ultrasound imaging. We compared deep learning methods for predicting breast density directly from breast ultrasound imaging, as well as machine learning models from breast ultrasound image gray-level histograms alone. The use of AI-derived breast ultrasound breast density as a breast cancer risk factor was compared to clinical BI-RADS breast density. Retrospective (2009-2022) breast ultrasound data were split by individual into 70/20/10% groups for training, validation, and held-out testing for reporting results. 405,120 clinical breast ultrasound images from 14,066 women (mean age 53 years, range 18-99 years) with clinical breast ultrasound exams were retrospectively selected for inclusion from three institutions: 10,393 training (302,574 images), 2593 validation (69,842), and 1074 testing (28,616). The AI model achieves AUROC 0.854 in breast density classification and statistically significantly outperforms all image statistic-based methods. In an existing clinical 5-year breast cancer risk model, breast ultrasound AI and clinical breast density predict 5-year breast cancer risk with 0.606 and 0.599 AUROC (DeLong's test p-value: 0.67), respectively. BI-RADS breast density can be estimated from breast ultrasound imaging with high accuracy. The AI model provided superior estimates to other machine learning approaches. Furthermore, we demonstrate that age-adjusted, AI-derived breast ultrasound breast density provides similar predictive power to mammographic breast density in our population. Estimated breast density from ultrasound may be useful in performing breast cancer risk assessment in areas where mammography may not be available. National Cancer Institute.

Predicting lung cancer bone metastasis using CT and pathological imaging with a Swin Transformer model.

Li W, Zou X, Zhang J, Hu M, Chen G, Su S

pubmed logopapersJun 1 2025
Bone metastasis is a common and serious complication in lung cancer patients, leading to severe pain, pathological fractures, and reduced quality of life. Early prediction of bone metastasis can enable timely interventions and improve patient outcomes. In this study, we developed a multimodal Swin Transformer-based deep learning model for predicting bone metastasis risk in lung cancer patients by integrating CT imaging and pathological data. A total of 215 patients with confirmed lung cancer diagnoses, including those with and without bone metastasis, were included. The model was designed to process high-resolution CT images and digitized histopathological images, with the features extracted independently by two Swin Transformer networks. These features were then fused using decision-level fusion techniques to improve classification accuracy. The Swin-Dual Fusion Model achieved superior performance compared to single-modality models and conventional architectures such as ResNet50, with an AUC of 0.966 on the test data and 0.967 on the training data. This integrated model demonstrated high accuracy, sensitivity, and specificity, making it a promising tool for clinical application in predicting bone metastasis risk. The study emphasizes the potential of transformer-based models to revolutionize bone oncology through advanced multimodal analysis and early prediction of metastasis, ultimately improving patient care and treatment outcomes.

Deep Learning Approaches for Brain Tumor Detection and Classification Using MRI Images (2020 to 2024): A Systematic Review.

Bouhafra S, El Bahi H

pubmed logopapersJun 1 2025
Brain tumor is a type of disease caused by uncontrolled cell proliferation in the brain leading to serious health issues such as memory loss and motor impairment. Therefore, early diagnosis of brain tumors plays a crucial role to extend the survival of patients. However, given the busy nature of the work of radiologists and aiming to reduce the likelihood of false diagnoses, advancing technologies including computer-aided diagnosis and artificial intelligence have shown an important role in assisting radiologists. In recent years, a number of deep learning-based methods have been applied for brain tumor detection and classification using MRI images and achieved promising results. The main objective of this paper is to present a detailed review of the previous researches in this field. In addition, This work summarizes the existing limitations and significant highlights. The study systematically reviews 60 articles researches published between 2020 and January 2024, extensively covering methods such as transfer learning, autoencoders, transformers, and attention mechanisms. The key findings formulated in this paper provide an analytic comparison and future directions. The review aims to provide a comprehensive understanding of automatic techniques that may be useful for professionals and academic communities working on brain tumor classification and detection.

Automated Neural Architecture Search for Cardiac Amyloidosis Classification from [18F]-Florbetaben PET Images.

Bargagna F, Zigrino D, De Santi LA, Genovesi D, Scipioni M, Favilli B, Vergaro G, Emdin M, Giorgetti A, Positano V, Santarelli MF

pubmed logopapersJun 1 2025
Medical image classification using convolutional neural networks (CNNs) is promising but often requires extensive manual tuning for optimal model definition. Neural architecture search (NAS) automates this process, reducing human intervention significantly. This study applies NAS to [18F]-Florbetaben PET cardiac images for classifying cardiac amyloidosis (CA) sub-types (amyloid light chain (AL) and transthyretin amyloid (ATTR)) and controls. Following data preprocessing and augmentation, an evolutionary cell-based NAS approach with a fixed network macro-structure is employed, automatically deriving cells' micro-structure. The algorithm is executed five times, evaluating 100 mutating architectures per run on an augmented dataset of 4048 images (originally 597), totaling 5000 architectures evaluated. The best network (NAS-Net) achieves 76.95% overall accuracy. K-fold analysis yields mean ± SD percentages of sensitivity, specificity, and accuracy on the test dataset: AL subjects (98.7 ± 2.9, 99.3 ± 1.1, 99.7 ± 0.7), ATTR-CA subjects (93.3 ± 7.8, 78.0 ± 2.9, 70.9 ± 3.7), and controls (35.8 ± 14.6, 77.1 ± 2.0, 96.7 ± 4.4). NAS-derived network performance rivals manually determined networks in the literature while using fewer parameters, validating its automatic approach's efficacy.

Children Are Not Small Adults: Addressing Limited Generalizability of an Adult Deep Learning CT Organ Segmentation Model to the Pediatric Population.

Chatterjee D, Kanhere A, Doo FX, Zhao J, Chan A, Welsh A, Kulkarni P, Trang A, Parekh VS, Yi PH

pubmed logopapersJun 1 2025
Deep learning (DL) tools developed on adult data sets may not generalize well to pediatric patients, posing potential safety risks. We evaluated the performance of TotalSegmentator, a state-of-the-art adult-trained CT organ segmentation model, on a subset of organs in a pediatric CT dataset and explored optimization strategies to improve pediatric segmentation performance. TotalSegmentator was retrospectively evaluated on abdominal CT scans from an external adult dataset (n = 300) and an external pediatric data set (n = 359). Generalizability was quantified by comparing Dice scores between adult and pediatric external data sets using Mann-Whitney U tests. Two DL optimization approaches were then evaluated: (1) 3D nnU-Net model trained on only pediatric data, and (2) an adult nnU-Net model fine-tuned on the pediatric cases. Our results show TotalSegmentator had significantly lower overall mean Dice scores on pediatric vs. adult CT scans (0.73 vs. 0.81, P < .001) demonstrating limited generalizability to pediatric CT scans. Stratified by organ, there was lower mean pediatric Dice score for four organs (P < .001, all): right and left adrenal glands (right adrenal, 0.41 [0.39-0.43] vs. 0.69 [0.66-0.71]; left adrenal, 0.35 [0.32-0.37] vs. 0.68 [0.65-0.71]); duodenum (0.47 [0.45-0.49] vs. 0.67 [0.64-0.69]); and pancreas (0.73 [0.72-0.74] vs. 0.79 [0.77-0.81]). Performance on pediatric CT scans improved by developing pediatric-specific models and fine-tuning an adult-trained model on pediatric images where both methods significantly improved segmentation accuracy over TotalSegmentator for all organs, especially for smaller anatomical structures (e.g., > 0.2 higher mean Dice for adrenal glands; P < .001).

Deep Conformal Supervision: Leveraging Intermediate Features for Robust Uncertainty Quantification.

Vahdani AM, Faghani S

pubmed logopapersJun 1 2025
Trustworthiness is crucial for artificial intelligence (AI) models in clinical settings, and a fundamental aspect of trustworthy AI is uncertainty quantification (UQ). Conformal prediction as a robust uncertainty quantification (UQ) framework has been receiving increasing attention as a valuable tool in improving model trustworthiness. An area of active research is the method of non-conformity score calculation for conformal prediction. We propose deep conformal supervision (DCS), which leverages the intermediate outputs of deep supervision for non-conformity score calculation, via weighted averaging based on the inverse of mean calibration error for each stage. We benchmarked our method on two publicly available datasets focused on medical image classification: a pneumonia chest radiography dataset and a preprocessed version of the 2019 RSNA Intracranial Hemorrhage dataset. Our method achieved mean coverage errors of 16e-4 (CI: 1e-4, 41e-4) and 5e-4 (CI: 1e-4, 10e-4) compared to baseline mean coverage errors of 28e-4 (CI: 2e-4, 64e-4) and 21e-4 (CI: 8e-4, 3e-4) on the two datasets, respectively (p < 0.001 on both datasets). Based on our findings, the baseline results of conformal prediction already exhibit small coverage errors. However, our method shows a significant improvement on coverage error, particularly noticeable in scenarios involving smaller datasets or when considering smaller acceptable error levels, which are crucial in developing UQ frameworks for healthcare AI applications.

Using Machine Learning on MRI Radiomics to Diagnose Parotid Tumours Before Comparing Performance with Radiologists: A Pilot Study.

Ammari S, Quillent A, Elvira V, Bidault F, Garcia GCTE, Hartl DM, Balleyguier C, Lassau N, Chouzenoux É

pubmed logopapersJun 1 2025
The parotid glands are the largest of the major salivary glands. They can harbour both benign and malignant tumours. Preoperative work-up relies on MR images and fine needle aspiration biopsy, but these diagnostic tools have low sensitivity and specificity, often leading to surgery for diagnostic purposes. The aim of this paper is (1) to develop a machine learning algorithm based on MR images characteristics to automatically classify parotid gland tumours and (2) compare its results with the diagnoses of junior and senior radiologists in order to evaluate its utility in routine practice. While automatic algorithms applied to parotid tumours classification have been developed in the past, we believe that our study is one of the first to leverage four different MRI sequences and propose a comparison with clinicians. In this study, we leverage data coming from a cohort of 134 patients treated for benign or malignant parotid tumours. Using radiomics extracted from the MR images of the gland, we train a random forest and a logistic regression to predict the corresponding histopathological subtypes. On the test set, the best results are given by the random forest: we obtain a 0.720 accuracy, a 0.860 specificity, and a 0.720 sensitivity over all histopathological subtypes, with an average AUC of 0.838. When considering the discrimination between benign and malignant tumours, the algorithm results in a 0.760 accuracy and a 0.769 AUC, both on test set. Moreover, the clinical experiment shows that our model helps to improve diagnostic abilities of junior radiologists as their sensitivity and accuracy raised by 6 % when using our proposed method. This algorithm may be useful for training of physicians. Radiomics with a machine learning algorithm may help improve discrimination between benign and malignant parotid tumours, decreasing the need for diagnostic surgery. Further studies are warranted to validate our algorithm for routine use.

Prediction of Malignancy and Pathological Types of Solid Lung Nodules on CT Scans Using a Volumetric SWIN Transformer.

Chen H, Wen Y, Wu W, Zhang Y, Pan X, Guan Y, Qin D

pubmed logopapersJun 1 2025
Lung adenocarcinoma and squamous cell carcinoma are the two most common pathological lung cancer subtypes. Accurate diagnosis and pathological subtyping are crucial for lung cancer treatment. Solitary solid lung nodules with lobulation and spiculation signs are often indicative of lung cancer; however, in some cases, postoperative pathology finds benign solid lung nodules. It is critical to accurately identify solid lung nodules with lobulation and spiculation signs before surgery; however, traditional diagnostic imaging is prone to misdiagnosis, and studies on artificial intelligence-assisted diagnosis are few. Therefore, we introduce a volumetric SWIN Transformer-based method. It is a multi-scale, multi-task, and highly interpretable model for distinguishing between benign solid lung nodules with lobulation and spiculation signs, lung adenocarcinomas, and lung squamous cell carcinoma. The technique's effectiveness was improved by using 3-dimensional (3D) computed tomography (CT) images instead of conventional 2-dimensional (2D) images to combine as much information as possible. The model was trained using 352 of the 441 CT image sequences and validated using the rest. The experimental results showed that our model could accurately differentiate between benign lung nodules with lobulation and spiculation signs, lung adenocarcinoma, and squamous cell carcinoma. On the test set, our model achieves an accuracy of 0.9888, precision of 0.9892, recall of 0.9888, and an F1-score of 0.9888, along with a class activation mapping (CAM) visualization of the 3D model. Consequently, our method could be used as a preoperative tool to assist in diagnosing solitary solid lung nodules with lobulation and spiculation signs accurately and provide a theoretical basis for developing appropriate clinical diagnosis and treatment plans for the patients.

Foundational Segmentation Models and Clinical Data Mining Enable Accurate Computer Vision for Lung Cancer.

Swinburne NC, Jackson CB, Pagano AM, Stember JN, Schefflein J, Marinelli B, Panyam PK, Autz A, Chopra MS, Holodny AI, Ginsberg MS

pubmed logopapersJun 1 2025
This study aims to assess the effectiveness of integrating Segment Anything Model (SAM) and its variant MedSAM into the automated mining, object detection, and segmentation (MODS) methodology for developing robust lung cancer detection and segmentation models without post hoc labeling of training images. In a retrospective analysis, 10,000 chest computed tomography scans from patients with lung cancer were mined. Line measurement annotations were converted to bounding boxes, excluding boxes < 1 cm or > 7 cm. The You Only Look Once object detection architecture was used for teacher-student learning to label unannotated lesions on the training images. Subsequently, a final tumor detection model was trained and employed with SAM and MedSAM for tumor segmentation. Model performance was assessed on a manually annotated test dataset, with additional evaluations conducted on an external lung cancer dataset before and after detection model fine-tuning. Bootstrap resampling was used to calculate 95% confidence intervals. Data mining yielded 10,789 line annotations, resulting in 5403 training boxes. The baseline detection model achieved an internal F1 score of 0.847, improving to 0.860 after self-labeling. Tumor segmentation using the final detection model attained internal Dice similarity coefficients (DSCs) of 0.842 (SAM) and 0.822 (MedSAM). After fine-tuning, external validation showed an F1 of 0.832 and DSCs of 0.802 (SAM) and 0.804 (MedSAM). Integrating foundational segmentation models into the MODS framework results in high-performing lung cancer detection and segmentation models using only mined clinical data. Both SAM and MedSAM hold promise as foundational segmentation models for radiology images.

Deep learning-enhanced zero echo time MRI for glenohumeral assessment in shoulder instability: a comparative study with CT.

Carretero-Gómez L, Fung M, Wiesinger F, Carl M, McKinnon G, de Arcos J, Mandava S, Arauz S, Sánchez-Lacalle E, Nagrani S, López-Alcorocho JM, Rodríguez-Íñigo E, Malpica N, Padrón M

pubmed logopapersJun 1 2025
To evaluate image quality and lesion conspicuity of zero echo time (ZTE) MRI reconstructed with deep learning (DL)-based algorithm versus conventional reconstruction and to assess DL ZTE performance against CT for bone loss measurements in shoulder instability. Forty-four patients (9 females; 33.5 ± 15.65 years) with symptomatic anterior glenohumeral instability and no previous shoulder surgery underwent ZTE MRI and CT on the same day. ZTE images were reconstructed with conventional and DL methods and post-processed for CT-like contrast. Two musculoskeletal radiologists, blinded to the reconstruction method, independently evaluated 20 randomized MR ZTE datasets with and without DL-enhancement for perceived signal-to-noise ratio, resolution, and lesion conspicuity at humerus and glenoid using a 4-point Likert scale. Inter-reader reliability was assessed using weighted Cohen's kappa (K). An ordinal logistic regression model analyzed Likert scores, with the reconstruction method (DL-enhanced vs. conventional) as the predictor. Glenoid track (GT) and Hill-Sachs interval (HSI) measurements were performed by another radiologist on both DL ZTE and CT datasets. Intermodal agreement was assessed through intraclass correlation coefficients (ICCs) and Bland-Altman analysis. DL ZTE MR bone images scored higher than conventional ZTE across all items, with significantly improved perceived resolution (odds ratio (OR) = 7.67, p = 0.01) and glenoid lesion conspicuity (OR = 25.12, p = 0.01), with substantial inter-rater agreement (K = 0.61 (0.38-0.83) to 0.77 (0.58-0.95)). Inter-modality assessment showed almost perfect agreement between DL ZTE MR and CT for all bone measurements (overall ICC = 0.99 (0.97-0.99)), with mean differences of 0.08 (- 0.80 to 0.96) mm for GT and - 0.07 (- 1.24 to 1.10) mm for HSI. DL-based reconstruction enhances ZTE MRI quality for glenohumeral assessment, offering osseous evaluation and quantification equivalent to gold-standard CT, potentially simplifying preoperative workflow, and reducing CT radiation exposure.
Page 29 of 45448 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.