Spherical Harmonics Representation Learning for High-Fidelity and Generalizable Super-Resolution in Diffusion MRI.
Authors
Abstract
Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features. Furthermore, traditional pixel-wise loss functions only consider pixel differences, and struggle to recover intricate image details essential for high-resolution reconstruction. We propose SHRL-dMRI, a novel Spherical Harmonics Representation Learning framework for high-fidelity, generalizable super-resolution in dMRI to address these challenges. SHRL-dMRI explores implicit neural representations and spherical harmonics to model continuous spatial and angular representations, simultaneously enhancing both spatial and angular resolution while improving the accuracy of microstructural parameter estimation. To further preserve image fidelity, a data-fidelity module and wavelet-based frequency loss are introduced, ensuring the super-resolved images preserve image consistency and retain fine details. Extensive experiments demonstrate that, compared to five other state-of-the-art methods, our method significantly enhances dMRI data resolution, improves the accuracy of microstructural parameter estimation, and provides better generalization capabilities. It maintains stable performance even under a 45× downsampling factor. The proposed method can effectively improve the resolution of dMRI data without increasing the acquisition time, providing new possibilities for future clinical applications.