Sort by:
Page 29 of 30297 results

STG: Spatiotemporal Graph Neural Network with Fusion and Spatiotemporal Decoupling Learning for Prognostic Prediction of Colorectal Cancer Liver Metastasis

Yiran Zhu, Wei Yang, Yan su, Zesheng Li, Chengchang Pan, Honggang Qi

arxiv logopreprintMay 6 2025
We propose a multimodal spatiotemporal graph neural network (STG) framework to predict colorectal cancer liver metastasis (CRLM) progression. Current clinical models do not effectively integrate the tumor's spatial heterogeneity, dynamic evolution, and complex multimodal data relationships, limiting their predictive accuracy. Our STG framework combines preoperative CT imaging and clinical data into a heterogeneous graph structure, enabling joint modeling of tumor distribution and temporal evolution through spatial topology and cross-modal edges. The framework uses GraphSAGE to aggregate spatiotemporal neighborhood information and leverages supervised and contrastive learning strategies to enhance the model's ability to capture temporal features and improve robustness. A lightweight version of the model reduces parameter count by 78.55%, maintaining near-state-of-the-art performance. The model jointly optimizes recurrence risk regression and survival analysis tasks, with contrastive loss improving feature representational discriminability and cross-modal consistency. Experimental results on the MSKCC CRLM dataset show a time-adjacent accuracy of 85% and a mean absolute error of 1.1005, significantly outperforming existing methods. The innovative heterogeneous graph construction and spatiotemporal decoupling mechanism effectively uncover the associations between dynamic tumor microenvironment changes and prognosis, providing reliable quantitative support for personalized treatment decisions.

Comprehensive Cerebral Aneurysm Rupture Prediction: From Clustering to Deep Learning

Zakeri, M., Atef, A., Aziznia, M., Jafari, A.

medrxiv logopreprintMay 6 2025
Cerebral aneurysm is a silent yet prevalent condition that affects a substantial portion of the global population. Aneurysms can develop due to various factors and present differently, necessitating diverse treatment approaches. Choosing the appropriate treatment upon diagnosis is paramount, as the severity of the disease dictates the course of action. The vulnerability of an aneurysm, particularly in the circle of Willis, is a critical concern; rupture can lead to irreversible consequences, including death. The primary objective of this study is to predict the rupture status of cerebral aneurysms using a comprehensive dataset that includes clinical, morphological, and hemodynamic data extracted from blood flow simulations of patients with actual vessels. Our goal is to provide valuable insights that can aid in treatment decision-making and potentially save the lives of future patients. Diagnosing and predicting the rupture status of aneurysms based solely on brain scans poses a significant challenge, often with limited accuracy, even for experienced physicians. However, harnessing statistical and machine learning (ML) techniques can enhance rupture prediction and treatment strategy selection. We employed a diverse set of supervised and unsupervised algorithms, training them on a database comprising over 700 cerebral aneurysms, which included 55 different parameters: 3 clinical, 35 morphological, and 17 hemodynamic features. Two of our models including stochastic gradient descent (SGD) and multi-layer perceptron (MLP) achieved a maximum area under the curve (AUC) of 0.86, a precision rate of 0.86, and a recall rate of 0.90 for prediction of cerebral aneurysm rupture. Given the sensitivity of the data and the critical nature of the condition, recall is a more vital parameter than accuracy and precision; our study achieved an acceptable recall score. Key features for rupture prediction included ellipticity index, low shear area ratio, and irregularity. Additionally, a one-dimensional CNN model predicted rupture status along a continuous spectrum, achieving 0.78 accuracy on the testing dataset, providing nuanced insights into rupture propensity.

Artificial intelligence-based echocardiography assessment to detect pulmonary hypertension.

Salehi M, Alabed S, Sharkey M, Maiter A, Dwivedi K, Yardibi T, Selej M, Hameed A, Charalampopoulos A, Kiely DG, Swift AJ

pubmed logopapersMay 1 2025
Tricuspid regurgitation jet velocity (TRJV) on echocardiography is used for screening patients with suspected pulmonary hypertension (PH). Artificial intelligence (AI) tools, such as the US2.AI, have been developed for automated evaluation of echocardiograms and can yield measurements that aid PH detection. This study evaluated the performance and utility of the US2.AI in a consecutive cohort of patients with suspected PH. 1031 patients who had been investigated for suspected PH between 2009-2021 were retrospectively identified from the ASPIRE registry. All patients had undergone echocardiography and right heart catheterisation (RHC). Based on RHC results, 771 (75%) patients with a mean pulmonary arterial pressure >20 mmHg were classified as having a diagnosis of PH (as per the 2022 European guidelines). Echocardiograms were evaluated manually and by the US2.AI tool to yield TRJV measurements. The AI tool demonstrated high interpretation yield, successfully measuring TRJV in 87% of echocardiograms. Manually and automatically derived TRJV values showed excellent agreement (intraclass correlation coefficient 0.94, 95% CI 0.94-0.95) with minimal bias (Bland-Altman analysis). Automated TRJV measurements showed equally high diagnostic accuracy for PH as manual measurements (area under the curve 0.88, 95% CI 0.84-0.90 <i>versus</i> 0.88, 95% CI 0.86-0.91). Automated TRJV measurements on echocardiography were similar to manual measurements, with similarly high and noninferior diagnostic accuracy for PH. These findings demonstrate that automated measurement of TRJV on echocardiography is feasible, accurate and reliable and support the implementation of AI-based approaches to echocardiogram evaluation and diagnostic imaging for PH.

From manual clinical criteria to machine learning algorithms: Comparing outcome endpoints derived from diverse electronic health record data modalities.

Chappidi S, Belue MJ, Harmon SA, Jagasia S, Zhuge Y, Tasci E, Turkbey B, Singh J, Camphausen K, Krauze AV

pubmed logopapersMay 1 2025
Progression free survival (PFS) is a critical clinical outcome endpoint during cancer management and treatment evaluation. Yet, PFS is often missing from publicly available datasets due to the current subjective, expert, and time-intensive nature of generating PFS metrics. Given emerging research in multi-modal machine learning (ML), we explored the benefits and challenges associated with mining different electronic health record (EHR) data modalities and automating extraction of PFS metrics via ML algorithms. We analyzed EHR data from 92 pathology-proven GBM patients, obtaining 233 corticosteroid prescriptions, 2080 radiology reports, and 743 brain MRI scans. Three methods were developed to derive clinical PFS: 1) frequency analysis of corticosteroid prescriptions, 2) natural language processing (NLP) of reports, and 3) computer vision (CV) volumetric analysis of imaging. Outputs from these methods were compared to manually annotated clinical guideline PFS metrics. Employing data-driven methods, standalone progression rates were 63% (prescription), 78% (NLP), and 54% (CV), compared to the 99% progression rate from manually applied clinical guidelines using integrated data sources. The prescription method identified progression an average of 5.2 months later than the clinical standard, while the CV and NLP algorithms identified progression earlier by 2.6 and 6.9 months, respectively. While lesion growth is a clinical guideline progression indicator, only half of patients exhibited increasing contrast-enhancing tumor volumes during scan-based CV analysis. Our results indicate that data-driven algorithms can extract tumor progression outcomes from existing EHR data. However, ML methods are subject to varying availability bias, supporting contextual information, and pre-processing resource burdens that influence the extracted PFS endpoint distributions. Our scan-based CV results also suggest that the automation of clinical criteria may not align with human intuition. Our findings indicate a need for improved data source integration, validation, and revisiting of clinical criteria in parallel to multi-modal ML algorithm development.

Automated Bi-Ventricular Segmentation and Regional Cardiac Wall Motion Analysis for Rat Models of Pulmonary Hypertension.

Niglas M, Baxan N, Ashek A, Zhao L, Duan J, O'Regan D, Dawes TJW, Nien-Chen C, Xie C, Bai W, Zhao L

pubmed logopapersApr 1 2025
Artificial intelligence-based cardiac motion mapping offers predictive insights into pulmonary hypertension (PH) disease progression and its impact on the heart. We proposed an automated deep learning pipeline for bi-ventricular segmentation and 3D wall motion analysis in PH rodent models for bridging the clinical developments. A data set of 163 short-axis cine cardiac magnetic resonance scans were collected longitudinally from monocrotaline (MCT) and Sugen-hypoxia (SuHx) PH rats and used for training a fully convolutional network for automated segmentation. The model produced an accurate annotation in < 1 s for each scan (Dice metric > 0.92). High-resolution atlas fitting was performed to produce 3D cardiac mesh models and calculate the regional wall motion between end-diastole and end-systole. Prominent right ventricular hypokinesia was observed in PH rats (-37.7% ± 12.2 MCT; -38.6% ± 6.9 SuHx) compared to healthy controls, attributed primarily to the loss in basal longitudinal and apical radial motion. This automated bi-ventricular rat-specific pipeline provided an efficient and novel translational tool for rodent studies in alignment with clinical cardiac imaging AI developments.

Artificial intelligence demonstrates potential to enhance orthopaedic imaging across multiple modalities: A systematic review.

Longo UG, Lalli A, Nicodemi G, Pisani MG, De Sire A, D'Hooghe P, Nazarian A, Oeding JF, Zsidai B, Samuelsson K

pubmed logopapersApr 1 2025
While several artificial intelligence (AI)-assisted medical imaging applications are reported in the recent orthopaedic literature, comparison of the clinical efficacy and utility of these applications is currently lacking. The aim of this systematic review is to evaluate the effectiveness and reliability of AI applications in orthopaedic imaging, focusing on their impact on diagnostic accuracy, image segmentation and operational efficiency across various imaging modalities. Based on the PRISMA guidelines, a comprehensive literature search of PubMed, Cochrane and Scopus databases was performed, using combinations of keywords and MeSH descriptors ('AI', 'ML', 'deep learning', 'orthopaedic surgery' and 'imaging') from inception to March 2024. Included were studies published between September 2018 and February 2024, which evaluated machine learning (ML) model effectiveness in improving orthopaedic imaging. Studies with insufficient data regarding the output variable used to assess the reliability of the ML model, those applying deterministic algorithms, unrelated topics, protocol studies, and other systematic reviews were excluded from the final synthesis. The Joanna Briggs Institute (JBI) Critical Appraisal tool and the Risk Of Bias In Non-randomised Studies-of Interventions (ROBINS-I) tool were applied for the assessment of bias among the included studies. The 53 included studies reported the use of 11.990.643 images from several diagnostic instruments. A total of 39 studies reported details in terms of the Dice Similarity Coefficient (DSC), while both accuracy and sensitivity were documented across 15 studies. Precision was reported by 14, specificity by nine, and the F1 score by four of the included studies. Three studies applied the area under the curve (AUC) method to evaluate ML model performance. Among the studies included in the final synthesis, Convolutional Neural Networks (CNN) emerged as the most frequently applied category of ML models, present in 17 studies (32%). The systematic review highlights the diverse application of AI in orthopaedic imaging, demonstrating the capability of various machine learning models in accurately segmenting and analysing orthopaedic images. The results indicate that AI models achieve high performance metrics across different imaging modalities. However, the current body of literature lacks comprehensive statistical analysis and randomized controlled trials, underscoring the need for further research to validate these findings in clinical settings. Systematic Review; Level of evidence IV.

Deep learning-based fine-grained assessment of aneurysm wall characteristics using 4D-CT angiography.

Kumrai T, Maekawa T, Chen Y, Sugiyama Y, Takagaki M, Yamashiro S, Takizawa K, Ichinose T, Ishida F, Kishima H

pubmed logopapersJan 1 2025
This study proposes a novel deep learning-based approach for aneurysm wall characteristics, including thin-walled (TW) and hyperplastic-remodeling (HR) regions. We analyzed fifty-two unruptured cerebral aneurysms employing 4D-computed tomography angiography (4D-CTA) and intraoperative recordings. The TW and HR regions were identified in intraoperative images. The 3D trajectories of observation points on aneurysm walls were processed to compute a time series of 3D speed, acceleration, and smoothness of motion, aiming to evaluate the aneurysm wall characteristics. To facilitate point-level risk evaluation using the time-series data, we developed a convolutional neural network (CNN)-long- short-term memory (LSTM)-based regression model enriched with attention layers. In order to accommodate patient heterogeneity, a patient-independent feature extraction mechanism was introduced. Furthermore, unlabeled data were incorporated to enhance the data-intensive deep model. The proposed method achieved an average diagnostic accuracy of 92%, significantly outperforming a simpler model lacking attention. These results underscore the significance of patient-independent feature extraction and the use of unlabeled data. This study demonstrates the efficacy of a fine-grained deep learning approach in predicting aneurysm wall characteristics using 4D-CTA. Notably, incorporating an attention-based network structure proved to be particularly effective, contributing to enhanced performance.

Brain tumor classification using MRI images and deep learning techniques.

Wong Y, Su ELM, Yeong CF, Holderbaum W, Yang C

pubmed logopapersJan 1 2025
Brain tumors pose a significant medical challenge, necessitating early detection and precise classification for effective treatment. This study aims to address this challenge by introducing an automated brain tumor classification system that utilizes deep learning (DL) and Magnetic Resonance Imaging (MRI) images. The main purpose of this research is to develop a model that can accurately detect and classify different types of brain tumors, including glioma, meningioma, pituitary tumors, and normal brain scans. A convolutional neural network (CNN) architecture with pretrained VGG16 as the base model is employed, and diverse public datasets are utilized to ensure comprehensive representation. Data augmentation techniques are employed to enhance the training dataset, resulting in a total of 17,136 brain MRI images across the four classes. The accuracy of this model was 99.24%, a higher accuracy than other similar works, demonstrating its potential clinical utility. This higher accuracy was achieved mainly due to the utilization of a large and diverse dataset, the improvement of network configuration, the application of a fine-tuning strategy to adjust pretrained weights, and the implementation of data augmentation techniques in enhancing classification performance for brain tumor detection. In addition, a web application was developed by leveraging HTML and Dash components to enhance usability, allowing for easy image upload and tumor prediction. By harnessing artificial intelligence (AI), the developed system addresses the need to reduce human error and enhance diagnostic accuracy. The proposed approach provides an efficient and reliable solution for brain tumor classification, facilitating early diagnosis and enabling timely medical interventions. This work signifies a potential advancement in brain tumor classification, promising improved patient care and outcomes.

The Role of Computed Tomography and Artificial Intelligence in Evaluating the Comorbidities of Chronic Obstructive Pulmonary Disease: A One-Stop CT Scanning for Lung Cancer Screening.

Lin X, Zhang Z, Zhou T, Li J, Jin Q, Li Y, Guan Y, Xia Y, Zhou X, Fan L

pubmed logopapersJan 1 2025
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Comorbidities in patients with COPD significantly increase morbidity, mortality, and healthcare costs, posing a significant burden on the management of COPD. Given the complex clinical manifestations and varying severity of COPD comorbidities, accurate diagnosis and evaluation are particularly important in selecting appropriate treatment options. With the development of medical imaging technology, AI-based chest CT, as a noninvasive imaging modality, provides a detailed assessment of COPD comorbidities. Recent studies have shown that certain radiographic features on chest CT can be used as alternative markers of comorbidities in COPD patients. CT-based radiomics features provided incremental predictive value than clinical risk factors only, predicting an AUC of 0.73 for COPD combined with CVD. However, AI has inherent limitations such as lack of interpretability, and further research is needed to improve them. This review evaluates the progress of AI technology combined with chest CT imaging in COPD comorbidities, including lung cancer, cardiovascular disease, osteoporosis, sarcopenia, excess adipose depots, and pulmonary hypertension, with the aim of improving the understanding of imaging and the management of COPD comorbidities for the purpose of improving disease screening, efficacy assessment, and prognostic evaluation.

Application of artificial intelligence in X-ray imaging analysis for knee arthroplasty: A systematic review.

Zhang Z, Hui X, Tao H, Fu Z, Cai Z, Zhou S, Yang K

pubmed logopapersJan 1 2025
Artificial intelligence (AI) is a promising and powerful technology with increasing use in orthopedics. The global morbidity of knee arthroplasty is expanding. This study investigated the use of AI algorithms to review radiographs of knee arthroplasty. The Ovid-Embase, Web of Science, Cochrane Library, PubMed, China National Knowledge Infrastructure (CNKI), WeiPu (VIP), WanFang, and China Biology Medicine (CBM) databases were systematically screened from inception to March 2024 (PROSPERO study protocol registration: CRD42024507549). The quality assessment of the diagnostic accuracy studies tool assessed the risk of bias. A total of 21 studies were included in the analysis. Of these, 10 studies identified and classified implant brands, 6 measured implant size and component alignment, 3 detected implant loosening, and 2 diagnosed prosthetic joint infections (PJI). For classifying and identifying implant brands, 5 studies demonstrated near-perfect prediction with an area under the curve (AUC) ranging from 0.98 to 1.0, and 10 achieved accuracy (ACC) between 96-100%. Regarding implant measurement, one study showed an AUC of 0.62, and two others exhibited over 80% ACC in determining component sizes. Moreover, Artificial intelligence showed good to excellent reliability across all angles in three separate studies (Intraclass Correlation Coefficient > 0.78). In predicting PJI, one study achieved an AUC of 0.91 with a corresponding ACC of 90.5%, while another reported a positive predictive value ranging from 75% to 85%. For detecting implant loosening, the AUC was found to be at least as high as 0.976 with ACC ranging from 85.8% to 97.5%. These studies show that AI is promising in recognizing implants in knee arthroplasty. Future research should follow a rigorous approach to AI development, with comprehensive and transparent reporting of methods and the creation of open-source software programs and commercial tools that can provide clinicians with objective clinical decisions.
Page 29 of 30297 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.