Sort by:
Page 247 of 2922917 results

Non-invasive CT based multiregional radiomics for predicting pathologic complete response to preoperative neoadjuvant chemoimmunotherapy in non-small cell lung cancer.

Fan S, Xie J, Zheng S, Wang J, Zhang B, Zhang Z, Wang S, Cui Y, Liu J, Zheng X, Ye Z, Cui X, Yue D

pubmed logopapersMay 19 2025
This study aims to develop and validate a multiregional radiomics model to predict pathological complete response (pCR) to neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC), and further evaluate the performance of the model in different specific subgroups (N2 stage and anti-PD-1/PD-L1). 216 patients with NSCLC who underwent neoadjuvant chemoimmunotherapy followed by surgical intervention were included and assigned to training and validation sets randomly. From pre-treatment baseline CT, one intratumoral (T) and two peritumoral regions (P<sub>3</sub>: 0-3 mm; P<sub>6</sub>: 0-6 mm) were extracted. Five radiomics models were developed using machine learning algorithms to predict pCR, utilizing selected features from intratumoral (T), peritumoral (P<sub>3</sub>, P<sub>6</sub>), and combined intra- and peritumoral regions (T + P<sub>3</sub>, T + P<sub>6</sub>). Additionally, the predictive efficacy of the optimal model was specifically assessed for patients in the N2 stage and anti-PD-1/PD-L1 subgroups. A total of 51.4 % (111/216) of patients exhibited pCR following neoadjuvant chemoimmunotherapy. Multivariable analysis identified that only the T + P<sub>3</sub> radiomics signature served as independent predictor of pCR (P < 0.001). The multiregional radiomics model (T + P<sub>3</sub>) exhibited superior predictive performance for pCR, achieving an area under the curve (AUC) of 0.75 in the validation cohort. Furthermore, this multiregional model maintained robust predictive accuracy in both N2 stage and anti-PD-1/PD-L1 subgroups, with an AUC of 0.829 and 0.833, respectively. The proposed multiregional radiomics model showed potential in predicting pCR in NSCLC after neoadjuvant chemoimmunotherapy, and demonstrated good predictive performance in different specific subgroups. This capability may assist clinicians in identifying suitable candidates for neoadjuvant chemoimmunotherapy and promote the advancement in precision therapy.

Improving Deep Learning-Based Grading of Partial-thickness Supraspinatus Tendon Tears with Guided Diffusion Augmentation.

Ni M, Jiesisibieke D, Zhao Y, Wang Q, Gao L, Tian C, Yuan H

pubmed logopapersMay 19 2025
To develop and validate a deep learning system with guided diffusion-based data augmentation for grading partial-thickness supraspinatus tendon (SST) tears and to compare its performance with experienced radiologists, including external validation. This retrospective study included 1150 patients with arthroscopically confirmed SST tears, divided into a training set (741 patients), validation set (185 patients), and internal test set (185 patients). An independent external test set of 224 patients was used for generalizability assessment. To address data imbalance, MRI images were augmented using a guided diffusion model. A ResNet-34 model was employed for Ellman grading of bursal-sided and articular-sided partial-thickness tears across different MRI sequences (oblique coronal [OCOR], oblique sagittal [OSAG], and combined OCOR+OSAG). Performance was evaluated using AUC and precision-recall curves, and compared to three experienced musculoskeletal (MSK) radiologists. The DeLong test was used to compare performance across different sequence combinations. A total of 26,020 OCOR images and 26,356 OSAG images were generated using the guided diffusion model. For bursal-sided partial-thickness tears in the internal dataset, the model achieved AUCs of 0.99, 0.98, and 0.97 for OCOR, OSAG, and combined sequences, respectively, while for articular-sided tears, AUCs were 0.99, 0.99, and 0.99. The DeLong test showed no significant differences among sequence combinations (P=0.17, 0.14, 0.07). In the external dataset, the combined-sequence model achieved AUCs of 0.99, 0.97, and 0.97 for bursal-sided tears and 0.99, 0.95, and 0.95 for articular-sided tears. Radiologists demonstrated an ICC of 0.99, but their grading performance was significantly lower than the ResNet-34 model (P<0.001). The deep learning system improved grading consistency and significantly reduced evaluation time, while guided diffusion augmentation enhanced model robustness. The proposed deep learning system provides a reliable and efficient method for grading partial-thickness SST tears, achieving radiologist-level accuracy with greater consistency and faster evaluation speed.

Effect of low-dose colchicine on pericoronary inflammation and coronary plaque composition in chronic coronary disease: a subanalysis of the LoDoCo2 trial.

Fiolet ATL, Lin A, Kwiecinski J, Tutein Nolthenius J, McElhinney P, Grodecki K, Kietselaer B, Opstal TS, Cornel JH, Knol RJ, Schaap J, Aarts RAHM, Tutein Nolthenius AMFA, Nidorf SM, Velthuis BK, Dey D, Mosterd A

pubmed logopapersMay 19 2025
Low-dose colchicine (0.5 mg once daily) reduces the risk of major cardiovascular events in coronary disease, but its mechanism of action is not yet fully understood. We investigated whether low-dose colchicine is associated with changes in pericoronary inflammation and plaque composition in patients with chronic coronary disease. We performed a cross-sectional, nationwide, subanalysis of the Low-Dose Colchicine 2 Trial (LoDoCo2, n=5522). CT angiography studies were performed in 151 participants randomised to colchicine or placebo coronary after a median treatment duration of 28.2 months. Pericoronary adipose tissue (PCAT) attenuation measurements around proximal coronary artery segments and quantitative plaque analysis for the entire coronary tree were performed using artificial intelligence-enabled plaque analysis software. Median PCAT attenuation was not significantly different between the two groups (-79.5 Hounsfield units (HU) for colchicine versus -78.7 HU for placebo, p=0.236). Participants assigned to colchicine had a higher volume (169.6 mm<sup>3</sup> vs 113.1 mm<sup>3</sup>, p=0.041) and burden (9.6% vs 7.0%, p=0.035) of calcified plaque, and higher volume of dense calcified plaque (192.8 mm<sup>3</sup> vs 144.3 mm<sup>3</sup>, p=0.048) compared with placebo, independent of statin therapy. Colchicine treatment was associated with a lower burden of low-attenuation plaque in participants on a low-intensity statin, but not in those on a high-intensity statin (p<sub>interaction</sub>=0.037). Pericoronary inflammation did not differ among participants who received low-dose colchicine compared with placebo. Low-dose colchicine was associated with a higher volume of calcified plaque, particularly dense calcified plaque, which is considered a feature of plaque stability.

Accuracy of segment anything model for classification of vascular stenosis in digital subtraction angiography.

Navasardyan V, Katz M, Goertz L, Zohranyan V, Navasardyan H, Shahzadi I, Kröger JR, Borggrefe J

pubmed logopapersMay 19 2025
This retrospective study evaluates the diagnostic performance of an optimized comprehensive multi-stage framework based on the Segment Anything Model (SAM), which we named Dr-SAM, for detecting and grading vascular stenosis in the abdominal aorta and iliac arteries using digital subtraction angiography (DSA). A total of 100 DSA examinations were conducted on 100 patients. The infrarenal abdominal aorta (AAI), common iliac arteries (CIA), and external iliac arteries (EIA) were independently evaluated by two experienced radiologists using a standardized 5-point grading scale. Dr-SAM analyzed the same DSA images, and its assessments were compared with the average stenosis grading provided by the radiologists. Diagnostic accuracy was evaluated using Cohen's kappa, specificity, sensitivity, and Wilcoxon signed-rank tests. Interobserver agreement between radiologists, which established the reference standard, was strong (Cohen's kappa: CIA right = 0.95, CIA left = 0.94, EIA right = 0.98, EIA left = 0.98, AAI = 0.79). Dr-SAM showed high agreement with radiologist consensus for CIA (κ = 0.93 right, 0.91 left), moderate agreement for EIA (κ = 0.79 right, 0.76 left), and fair agreement for AAI (κ = 0.70). Dr-SAM demonstrated excellent specificity (up to 1.0) and robust sensitivity (0.67-0.83). Wilcoxon tests revealed no significant differences between Dr-SAM and radiologist grading (p > 0.05). Dr-SAM proved to be an accurate and efficient tool for vascular assessment, with the potential to streamline diagnostic workflows and reduce variability in stenosis grading. Its ability to deliver rapid and consistent evaluations may contribute to earlier detection of disease and the optimization of treatment strategies. Further studies are needed to confirm these findings in prospective settings and to enhance its capabilities, particularly in the detection of occlusions.

GuidedMorph: Two-Stage Deformable Registration for Breast MRI

Yaqian Chen, Hanxue Gu, Haoyu Dong, Qihang Li, Yuwen Chen, Nicholas Konz, Lin Li, Maciej A. Mazurowski

arxiv logopreprintMay 19 2025
Accurately registering breast MR images from different time points enables the alignment of anatomical structures and tracking of tumor progression, supporting more effective breast cancer detection, diagnosis, and treatment planning. However, the complexity of dense tissue and its highly non-rigid nature pose challenges for conventional registration methods, which primarily focus on aligning general structures while overlooking intricate internal details. To address this, we propose \textbf{GuidedMorph}, a novel two-stage registration framework designed to better align dense tissue. In addition to a single-scale network for global structure alignment, we introduce a framework that utilizes dense tissue information to track breast movement. The learned transformation fields are fused by introducing the Dual Spatial Transformer Network (DSTN), improving overall alignment accuracy. A novel warping method based on the Euclidean distance transform (EDT) is also proposed to accurately warp the registered dense tissue and breast masks, preserving fine structural details during deformation. The framework supports paradigms that require external segmentation models and with image data only. It also operates effectively with the VoxelMorph and TransMorph backbones, offering a versatile solution for breast registration. We validate our method on ISPY2 and internal dataset, demonstrating superior performance in dense tissue, overall breast alignment, and breast structural similarity index measure (SSIM), with notable improvements by over 13.01% in dense tissue Dice, 3.13% in breast Dice, and 1.21% in breast SSIM compared to the best learning-based baseline.

An overview of artificial intelligence and machine learning in shoulder surgery.

Cho SH, Kim YS

pubmed logopapersMay 19 2025
Machine learning (ML), a subset of artificial intelligence (AI), utilizes advanced algorithms to learn patterns from data, enabling accurate predictions and decision-making without explicit programming. In orthopedic surgery, ML is transforming clinical practice, particularly in shoulder arthroplasty and rotator cuff tears (RCTs) management. This review explores the fundamental paradigms of ML, including supervised, unsupervised, and reinforcement learning, alongside key algorithms such as XGBoost, neural networks, and generative adversarial networks. In shoulder arthroplasty, ML accurately predicts postoperative outcomes, complications, and implant selection, facilitating personalized surgical planning and cost optimization. Predictive models, including ensemble learning methods, achieve over 90% accuracy in forecasting complications, while neural networks enhance surgical precision through AI-assisted navigation. In RCTs treatment, ML enhances diagnostic accuracy using deep learning models on magnetic resonance imaging and ultrasound, achieving area under the curve values exceeding 0.90. ML models also predict tear reparability with 85% accuracy and postoperative functional outcomes, including range of motion and patient-reported outcomes. Despite remarkable advancements, challenges such as data variability, model interpretability, and integration into clinical workflows persist. Future directions involve federated learning for robust model generalization and explainable AI to enhance transparency. ML continues to revolutionize orthopedic care by providing data-driven, personalized treatment strategies and optimizing surgical outcomes.

Longitudinal Validation of a Deep Learning Index for Aortic Stenosis Progression

Park, J., Kim, J., Yoon, Y. E., Jeon, J., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Cho, G.-Y., Chang, H.-J., Park, J.-H.

medrxiv logopreprintMay 19 2025
AimsAortic stenosis (AS) is a progressive disease requiring timely monitoring and intervention. While transthoracic echocardiography (TTE) remains the diagnostic standard, deep learning (DL)-based approaches offer potential for improved disease tracking. This study examined the longitudinal changes in a previously developed DL-derived index for AS continuum (DLi-ASc) and assessed its value in predicting progression to severe AS. Methods and ResultsWe retrospectively analysed 2,373 patients a(7,371 TTEs) from two tertiary hospitals. DLi-ASc (scaled 0-100), derived from parasternal long- and/or short-axis views, was tracked longitudinally. DLi-ASc increased in parallel with worsening AS stages (p for trend <0.001) and showed strong correlations with AV maximal velocity (Vmax) (Pearson correlation coefficients [PCC] = 0.69, p<0.001) and mean pressure gradient (mPG) (PCC = 0.66, p<0.001). Higher baseline DLi-ASc was associated with a faster AS progression rate (p for trend <0.001). Additionally, the annualised change in DLi-ASc, estimated using linear mixed-effect models, correlated strongly with the annualised progression of AV Vmax (PCC = 0.71, p<0.001) and mPG (PCC = 0.68, p<0.001). In Fine-Gray competing risk models, baseline DLi-ASc independently predicted progression to severe AS, even after adjustment for AV Vmax or mPG (hazard ratio per 10-point increase = 2.38 and 2.80, respectively) ConclusionDLi-ASc increased in parallel with AS progression and independently predicted severe AS progression. These findings support its role as a non-invasive imaging-based digital marker for longitudinal AS monitoring and risk stratification.

Deep learning feature-based model for predicting lymphovascular invasion in urothelial carcinoma of bladder using CT images.

Xiao B, Lv Y, Peng C, Wei Z, Xv Q, Lv F, Jiang Q, Liu H, Li F, Xv Y, He Q, Xiao M

pubmed logopapersMay 18 2025
Lymphovascular invasion significantly impacts the prognosis of urothelial carcinoma of the bladder. Traditional lymphovascular invasion detection methods are time-consuming and costly. This study aims to develop a deep learning-based model to preoperatively predict lymphovascular invasion status in urothelial carcinoma of bladder using CT images. Data and CT images of 577 patients across four medical centers were retrospectively collected. The largest tumor slices from the transverse, coronal, and sagittal planes were selected and used to train CNN models (InceptionV3, DenseNet121, ResNet18, ResNet34, ResNet50, and VGG11). Deep learning features were extracted and visualized using Grad-CAM. Principal Component Analysis reduced features to 64. Using the extracted features, Decision Tree, XGBoost, and LightGBM models were trained with 5-fold cross-validation and ensembled in a stacking model. Clinical risk factors were identified through logistic regression analyses and combined with DL scores to enhance lymphovascular invasion prediction accuracy. The ResNet50-based model achieved an AUC of 0.818 in the validation set and 0.708 in the testing set. The combined model showed an AUC of 0.794 in the validation set and 0.767 in the testing set, demonstrating robust performance across diverse data. We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder. This model offers a non-invasive, cost-effective tool to assist clinicians in personalized treatment planning. We developed a robust radiomics model based on deep learning features from CT images to preoperatively predict lymphovascular invasion status in urothelial carcinoma of the bladder. We developed a deep learning feature-based stacking model to predict lymphovascular invasion in urothelial carcinoma of the bladder patients using CT. Max cross sections from three dimensions of the CT image are used to train the CNN model. We made comparisons across six CNN networks, including ResNet50.

ChatGPT-4-Driven Liver Ultrasound Radiomics Analysis: Advantages and Drawbacks Compared to Traditional Techniques.

Sultan L, Venkatakrishna SSB, Anupindi S, Andronikou S, Acord M, Otero H, Darge K, Sehgal C, Holmes J

pubmed logopapersMay 18 2025
Artificial intelligence (AI) is transforming medical imaging, with large language models such as ChatGPT-4 emerging as potential tools for automated image interpretation. While AI-driven radiomics has shown promise in diagnostic imaging, the efficacy of ChatGPT-4 in liver ultrasound analysis remains largely unexamined. This study evaluates the capability of ChatGPT-4 in liver ultrasound radiomics, specifically its ability to differentiate fibrosis, steatosis, and normal liver tissue, compared to conventional image analysis software. Seventy grayscale ultrasound images from a preclinical liver disease model, including fibrosis (n=31), fatty liver (n=18), and normal liver (n=21), were analyzed. ChatGPT-4 extracted texture features, which were compared to those obtained using Interactive Data Language (IDL), a traditional image analysis software. One-way ANOVA was used to identify statistically significant features differentiating liver conditions, and logistic regression models were employed to assess diagnostic performance. ChatGPT-4 extracted nine key textural features-echo intensity, heterogeneity, skewness, kurtosis, contrast, homogeneity, dissimilarity, angular second moment, and entropy-all of which significantly differed across liver conditions (p < 0.05). Among individual features, echo intensity achieved the highest F1-score (0.85). When combined, ChatGPT-4 attained 76% accuracy and 83% sensitivity in classifying liver disease. ROC analysis demonstrated strong discriminatory performance, with AUC values of 0.75 for fibrosis, 0.87 for normal liver, and 0.97 for steatosis. Compared to Interactive Data Language (IDL) image analysis software, ChatGPT-4 exhibited slightly lower sensitivity (0.83 vs. 0.89) but showed moderate correlation (R = 0.68, p < 0.0001) with IDL-derived features. However, it significantly outperformed IDL in processing efficiency, reducing analysis time by 40%, highlighting its potential for high throughput radiomic analysis. Despite slightly lower sensitivity than IDL, ChatGPT-4 demonstrated high feasibility for ultrasound radiomics, offering faster processing, high-throughput analysis, and automated multi-image evaluation. These findings support its potential integration into AI-driven imaging workflows, with further refinements needed to enhance feature reproducibility and diagnostic accuracy.

Attention-Enhanced U-Net for Accurate Segmentation of COVID-19 Infected Lung Regions in CT Scans

Amal Lahchim, Lazar Davic

arxiv logopreprintMay 18 2025
In this study, we propose a robust methodology for automatic segmentation of infected lung regions in COVID-19 CT scans using convolutional neural networks. The approach is based on a modified U-Net architecture enhanced with attention mechanisms, data augmentation, and postprocessing techniques. It achieved a Dice coefficient of 0.8658 and mean IoU of 0.8316, outperforming other methods. The dataset was sourced from public repositories and augmented for diversity. Results demonstrate superior segmentation performance. Future work includes expanding the dataset, exploring 3D segmentation, and preparing the model for clinical deployment.
Page 247 of 2922917 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.