Sort by:
Page 245 of 3993982 results

Slide-free surface histology enables rapid colonic polyp interpretation across specialties and foundation AI

Yong, A., Husna, N., Tan, K. H., Manek, G., Sim, R., Loi, R., Lee, O., Tang, S., Soon, G., Chan, D., Liang, K.

medrxiv logopreprintJun 11 2025
Colonoscopy is a mainstay of colorectal cancer screening and has helped to lower cancer incidence and mortality. The resection of polyps during colonoscopy is critical for tissue diagnosis and prevention of colorectal cancer, albeit resulting in increased resource requirements and expense. Discarding resected benign polyps without sending for histopathological processing and confirmatory diagnosis, known as the resect and discard strategy, could enhance efficiency but is not commonly practiced due to endoscopists predominant preference for pathological confirmation. The inaccessibility of histopathology from unprocessed resected tissue hampers endoscopic decisions. We show that intraprocedural fibre-optic microscopy with ultraviolet-C surface excitation (FUSE) of polyps post-resection enables rapid diagnosis, potentially complementing endoscopic interpretation and incorporating pathologist oversight. In a clinical study of 28 patients, slide-free FUSE microscopy of freshly resected polyps yielded mucosal views that greatly magnified the surface patterns observed on endoscopy and revealed previously unavailable histopathological signatures. We term this new cross-specialty readout surface histology. In blinded interpretations of 42 polyps (19 training, 23 reading) by endoscopists and pathologists of varying experience, surface histology differentiated normal/benign, low-grade dysplasia, and high-grade dysplasia and cancer, with 100% performance in classifying high/low risk. This FUSE dataset was also successfully interpreted by foundation AI models pretrained on histopathology slides, illustrating a new potential for these models to not only expedite conventional pathology tasks but also autonomously provide instant expert feedback during procedures that typically lack pathologists. Surface histology readouts during colonoscopy promise to empower endoscopist decisions and broadly enhance confidence and participation in resect and discard. One Sentence SummaryRapid microscopy of resected polyps during colonoscopy yielded accurate diagnoses, promising to enhance colorectal screening.

AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study

Yi, J., Patel, K., Miller, R. J., Marcinkiewicz, A. M., Shanbhag, A., Hijazi, W., Dharmavaram, N., Lemley, M., Zhou, J., Zhang, W., Liang, J. X., Ramirez, G., Builoff, V., Slipczuk, L., Travin, M., Alexanderson, E., Carvajal-Juarez, I., Packard, R. R., Al-Mallah, M., Ruddy, T. D., Einstein, A. J., Feher, A., Miller, E. J., Acampa, W., Knight, S., Le, V., Mason, S., Calsavara, V. F., Chareonthaitawee, P., Wopperer, S., Kwan, A. C., Wang, L., Berman, D. S., Dey, D., Di Carli, M. F., Slomka, P.

medrxiv logopreprintJun 11 2025
BackgroundHepatic steatosis (HS) is a common cardiometabolic risk factor frequently present but under- diagnosed in patients with suspected or known coronary artery disease. We used artificial intelligence (AI) to automatically quantify hepatic tissue measures for identifying HS from CT attenuation correction (CTAC) scans during myocardial perfusion imaging (MPI) and evaluate their added prognostic value for all-cause mortality prediction. MethodsThis study included 27039 consecutive patients [57% male] with MPI scans from nine sites. We used an AI model to segment liver and spleen on low dose CTAC scans and quantify the liver measures, and the difference of liver minus spleen (LmS) measures. HS was defined as mean liver attenuation < 40 Hounsfield units (HU) or LmS attenuation < -10 HU. Additionally, we used seven sites to develop an AI liver risk index (LIRI) for comprehensive hepatic assessment by integrating the hepatic measures and two external sites to validate its improved prognostic value and generalizability for all-cause mortality prediction over HS. FindingsMedian (interquartile range [IQR]) age was 67 [58, 75] years and body mass index (BMI) was 29.5 [25.5, 34.7] kg/m2, with diabetes in 8950 (33%) patients. The algorithm identified HS in 6579 (24%) patients. During median [IQR] follow-up of 3.58 [1.86, 5.15] years, 4836 (18%) patients died. HS was associated with increased mortality risk overall (adjusted hazard ratio (HR): 1.14 [1.05, 1.24], p=0.0016) and in subpopulations. LIRI provided higher prognostic value than HS after adjustments overall (adjusted HR 1.5 [1.32, 1.69], p<0.0001 vs HR 1.16 [1.02, 1.31], p=0.0204) and in subpopulations. InterpretationsAI-based hepatic measures automatically identify HS from CTAC scans in patients undergoing MPI without additional radiation dose or physician interaction. Integrated liver assessment combining multiple hepatic imaging measures improved risk stratification for all-cause mortality. FundingNational Heart, Lung, and Blood Institute/National Institutes of Health. Research in context Evidence before this studyExisting studies show that fully automated hepatic quantification analysis from chest computed tomography (CT) scans is feasible. While hepatic measures show significant potential for improving risk stratification and patient management, CT attenuation correction (CTAC) scans from patients undergoing myocardial perfusion imaging (MPI) have rarely been utilized for concurrent and automated volumetric hepatic analysis beyond its current utilization for attenuation correction and coronary artery calcium burden assessment. We conducted a literature review on PubMed and Google Scholar on April 1st, 2025, using the following keywords: ("liver" OR "hepatic") AND ("quantification" OR "measure") AND ("risk stratification" OR "survival analysis" OR "prognosis" OR "prognostic prediction") AND ("CT" OR "computed tomography"). Previous studies have established approaches for the identification of hepatic steatosis (HS) and its prognostic value in various small- scale cohorts using either invasive biopsy or non-invasive imaging approaches. However, CT-based non- invasive imaging, existing research predominantly focuses on manual region-of-interest (ROI)-based hepatic quantification from selected CT slices or on identifying hepatic steatosis without comprehensive prognostic assessment in large-scale and multi-site cohorts, which hinders the association evaluation of hepatic steatosis for risk stratification in clinical routine with less precise estimates, weak statistical reliability, and limited subgroup analysis to assess bias effects. No existing studies investigated the prognostic value of hepatic steatosis measured in consecutive patients undergoing MPI. These patients usually present with multiple cardiovascular risk factors such as hypertension, dyslipidemia, diabetes and family history of coronary disease. Whether hepatic measures could provide added prognostic value over existing cardiometabolic factors is unknown. Furthermore, despite the diverse hepatic measures on CT in existing literature, integrated AI-based assessment has not been investigated before though it may improve the risk stratification further over HS. Lastly, previous research relied on dedicated CT scans performed for screening purposes. CTAC scans obtained routinely with MPI had never been utilized for automated HS detection and prognostic evaluation, despite being readily available at no additional cost or radiation exposure. Added value of this studyIn this multi-center (nine sites) international (three countries) study of 27039 consecutive patients undergoing myocardial perfusion imaging (MPI) with PET or SPECT, we used an innovative artificial intelligence (AI)- based approach for automatically segmenting the entire liver and spleen volumes from low-dose ungated CT attenuation correction (CTAC) scans acquired during MPI, followed by the identification of hepatic steatosis. We evaluated the added prognostic value of several key hepatic metrics--liver measures (mean attenuation, coefficient of variation (CoV), entropy, and standard deviation), and similar measures for the difference of liver minus spleen (LmS)--derived from volumetric quantification of CTAC scans with adjustment for existing clinical and MPI variables. A HS imaging criterion (HSIC: a patient has moderate or severe hepatic steatosis if the mean liver attenuation is < 40 Hounsfield unit (HU) or the difference of liver mean attenuation and spleen mean attenuation is < -10 HU) was used to detect HS. These hepatic metrics were assessed for their ability to predict all-cause mortality in a large-scale and multi-center patient cohort. Additionally, we developed and validated an eXtreme Gradient Boosting decision tree model for integrated liver assessment and risk stratification by combining the hepatic metrics with the demographic variables to derive a liver risk index (LIRI). Our results demonstrated strong associations between the hepatic metrics and all-cause mortality, even after adjustment for clinical variables, myocardial perfusion, and atherosclerosis biomarkers. Our results revealed significant differences in the association of HS with mortality in different sex, age, and race subpopulations. Similar differences were also observed in various chronic disease subpopulations such as obese and diabetic subpopulations. These results highlighted the modifying effects of various patient characteristics, partially accounting for the inconsistent association observed in existing studies. Compared with individual hepatic measures, LIRI showed significant improvement compared to HSIC-based HS in mortality prediction in external testing. All these demonstrate the feasibility of HS detection and integrated liver assessment from cardiac low-dose CT scans from MPI, which is also expected to apply for generic chest CT scans which have coverage of liver and spleen while prior studies used dedicated abdominal CT scans for such purposes. Implications of all the available evidenceRoutine point-of-care analysis of hepatic quantification can be seamlessly integrated into all MPI using CTAC scans to noninvasively identify HS at no additional cost or radiation exposure. The automatically derived hepatic metrics enhance risk stratification by providing additional prognostic value beyond existing clinical and imaging factors, and the LIRI enables comprehensive assessment of liver and further improves risk stratification and patient management.

Automated Whole-Brain Focal Cortical Dysplasia Detection Using MR Fingerprinting With Deep Learning.

Ding Z, Morris S, Hu S, Su TY, Choi JY, Blümcke I, Wang X, Sakaie K, Murakami H, Alexopoulos AV, Jones SE, Najm IM, Ma D, Wang ZI

pubmed logopapersJun 10 2025
Focal cortical dysplasia (FCD) is a common pathology for pharmacoresistant focal epilepsy, yet detection of FCD on clinical MRI is challenging. Magnetic resonance fingerprinting (MRF) is a novel quantitative imaging technique providing fast and reliable tissue property measurements. The aim of this study was to develop an MRF-based deep-learning (DL) framework for whole-brain FCD detection. We included patients with pharmacoresistant focal epilepsy and pathologically/radiologically diagnosed FCD, as well as age-matched and sex-matched healthy controls (HCs). All participants underwent 3D whole-brain MRF and clinical MRI scans. T1, T2, gray matter (GM), and white matter (WM) tissue fraction maps were reconstructed from a dictionary-matching algorithm based on the MRF acquisition. A 3D ROI was manually created for each lesion. All MRF maps and lesion labels were registered to the Montreal Neurological Institute space. Mean and SD T1 and T2 maps were calculated voxel-wise across using HC data. T1 and T2 <i>z</i>-score maps for each patient were generated by subtracting the mean HC map and dividing by the SD HC map. MRF-based morphometric maps were produced in the same manner as in the morphometric analysis program (MAP), based on MRF GM and WM maps. A no-new U-Net model was trained using various input combinations, with performance evaluated through leave-one-patient-out cross-validation. We compared model performance using various input combinations from clinical MRI and MRF to assess the impact of different input types on model effectiveness. We included 40 patients with FCD (mean age 28.1 years, 47.5% female; 11 with FCD IIa, 14 with IIb, 12 with mMCD, 3 with MOGHE) and 67 HCs. The DL model with optimal performance used all MRF-based inputs, including MRF-synthesized T1w, T1z, and T2z maps; tissue fraction maps; and morphometric maps. The patient-level sensitivity was 80% with an average of 1.7 false positives (FPs) per patient. Sensitivity was consistent across subtypes, lobar locations, and lesional/nonlesional clinical MRI. Models using clinical images showed lower sensitivity and higher FPs. The MRF-DL model also outperformed the established MAP18 pipeline in sensitivity, FPs, and lesion label overlap. The MRF-DL framework demonstrated efficacy for whole-brain FCD detection. Multiparametric MRF features from a single scan offer promising inputs for developing a deep-learning tool capable of detecting subtle epileptic lesions.

Sonopermeation combined with stroma normalization enables complete cure using nano-immunotherapy in murine breast tumors.

Neophytou C, Charalambous A, Voutouri C, Angeli S, Panagi M, Stylianopoulos T, Mpekris F

pubmed logopapersJun 10 2025
Nano-immunotherapy shows great promise in improving patient outcomes, as seen in advanced triple-negative breast cancer, but it does not cure the disease, with median survival under two years. Therefore, understanding resistance mechanisms and developing strategies to enhance its effectiveness in breast cancer is crucial. A key resistance mechanism is the pronounced desmoplasia in the tumor microenvironment, which leads to dysfunction of tumor blood vessels and thus, to hypoperfusion, limited drug delivery and hypoxia. Ultrasound sonopermeation and agents that normalize the tumor stroma have been employed separately to restore vascular abnormalities in tumors with some success. Here, we performed in vivo studies in two murine, orthotopic breast tumor models to explore if combination of ultrasound sonopermeation with a stroma normalization drug can synergistically improve tumor perfusion and enhance the efficacy of nano-immunotherapy. We found that the proposed combinatorial treatment can drastically reduce primary tumor growth and in many cases tumors were no longer measurable. Overall survival studies showed that all mice that received the combination treatment survived and rechallenge experiments revealed that the survivors obtained immunological memory. Employing ultrasound elastography and contrast enhanced ultrasound along with proteomics analysis, flow cytometry and immunofluorescene staining, we found the combinatorial treatment reduced tumor stiffness to normal levels, restoring tumor perfusion and oxygenation. Furthermore, it increased infiltration and activity of immune cells and altered the levels of immunosupportive chemokines. Finally, using machine learning analysis, we identified that tumor stiffness, CD8<sup>+</sup> T cells and M2-type macrophages were strong predictors of treatment response.

Robotic Central Pancreatectomy with Omental Pedicle Flap: Tactics and Tips.

Kawano F, Lim MA, Kemprecos HJ, Tsai K, Cheah D, Tigranyan A, Kaviamuthan K, Pillai A, Chen JC, Polites G, Mise Y, Cohen M, Saiura A, Conrad C

pubmed logopapersJun 10 2025
Robotic central pancreatectomy is increasingly used for pre- or low-grade malignant tumors in the pancreatic body balancing preservation of pancreatic function while removing the target lesion.<sup>1-3</sup> Today, there is no established reconstruction method and high rates of postpancreatectomy fistulas (POPF) remain a significant concern. <sup>4,5</sup> We developed novel technique involving transgastric pancreaticogastrostomy with an omental pedicle advancement flap to reduce the risk of POPF. Additionally, preoperative deep-learning 3D organ modeling plays a crucial role in enhancing spatial understanding to enhance procedural safety.<sup>6,7</sup> METHODS: A 76-year-old female patient with a 33-mm, biopsy-confirmed high-risk IPMN underwent robotic-assisted central pancreatectomy. Preoperative CT was processed with a deep-learning system to create a patient-specific 3D model, enabling virtual simulation of port configurations. The optimal setup was selected based on the spatial relationship between port site, tumor location, and anatomy A transgastric pancreaticogastrostomy with omental flap reinforcement was performed to reduce POPF leading to a simpler reconstruction compared to pancreaticojejunostomy. The procedure lasted 218 min with minimal blood loss (50 ml). No complications occurred, and the patient was discharged on postoperative Day 3 after drain removal. Final pathology showed low-grade dysplasia. This approach, facilitated by robotic assistance, effectively preserves pancreatic function while treating a low-grade malignant tumor. Preoperative 3D organ modeling enhances the spatial understanding with the goal to increase procedural safety. Finally, the omental pedicle advancement flap technique shows promise in possibly reducing the incidence or at least the impact of POPF.

A Deep Learning Model for Identifying the Risk of Mesenteric Malperfusion in Acute Aortic Dissection Using Initial Diagnostic Data: Algorithm Development and Validation.

Jin Z, Dong J, Li C, Jiang Y, Yang J, Xu L, Li P, Xie Z, Li Y, Wang D, Ji Z

pubmed logopapersJun 10 2025
Mesenteric malperfusion (MMP) is an uncommon but devastating complication of acute aortic dissection (AAD) that combines 2 life-threatening conditions-aortic dissection and acute mesenteric ischemia. The complex pathophysiology of MMP poses substantial diagnostic and management challenges. Currently, delayed diagnosis remains a critical contributor to poor outcomes because of the absence of reliable individualized risk assessment tools. This study aims to develop and validate a deep learning-based model that integrates multimodal data to identify patients with AAD at high risk of MMP. This multicenter retrospective study included 525 patients with AAD from 2 hospitals. The training and internal validation cohort consisted of 450 patients from Beijing Anzhen Hospital, whereas the external validation cohort comprised 75 patients from Nanjing Drum Tower Hospital. Three machine learning models were developed: the benchmark model using laboratory parameters, the multiorgan feature-based AAD complicating MMP (MAM) model based on computed tomography angiography images, and the integrated model combining both data modalities. Model performance was assessed using the area under the curve, accuracy, sensitivity, specificity, and Brier score. To improve interpretability, gradient-weighted class activation mapping was used to identify and visualize discriminative imaging features. Univariate and multivariate regression analyses were used to evaluate the prognostic significance of the risk score generated by the optimal model. In the external validation cohort, the integrated model demonstrated superior performance, with an area under the curve of 0.780 (95% CI 0.777-0.785), which was significantly greater than those of the benchmark model (0.586, 95% CI 0.574-0.586) and the MAM model (0.732, 95% CI 0.724-0.734). This highlights the benefits of multimodal integration over single-modality approaches. Additional classification metrics revealed that the integrated model had an accuracy of 0.760 (95% CI 0.758-0.764), a sensitivity of 0.667 (95% CI 0.659-0.675), a specificity of 0.783 (95% CI 0.781-0.788), and a Brier score of 0.143 (95% CI 0.143-0.145). Moreover, gradient-weighted class activation mapping visualizations of the MAM model revealed that during positive predictions, the model focused more on key anatomical areas, particularly the superior mesenteric artery origin and intestinal regions with characteristic gas or fluid accumulation. Univariate and multivariate analyses also revealed that the risk score derived from the integrated model was independently associated with inhospital mortality risk among patients with AAD undergoing endovascular or surgical treatment (odds ratio 1.030, 95% CI 1.004-1.056; P=.02). Our findings demonstrate that compared with unimodal approaches, an integrated deep learning model incorporating both imaging and clinical data has greater diagnostic accuracy for MMP in patients with AAD. This model may serve as a valuable tool for early risk identification, facilitating timely therapeutic decision-making. Further prospective validation is warranted to confirm its clinical utility. Chinese Clinical Registry Center ChiCTR2400086050; http://www.chictr.org.cn/showproj.html?proj=226129.

Advancements and Applications of Hyperpolarized Xenon MRI for COPD Assessment in China.

Li H, Li H, Zhang M, Fang Y, Shen L, Liu X, Xiao S, Zeng Q, Zhou Q, Zhao X, Shi L, Han Y, Zhou X

pubmed logopapersJun 10 2025
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality in China, highlighting the importance of early diagnosis and ongoing monitoring for effective management. In recent years, hyperpolarized 129Xe MRI technology has gained significant clinical attention due to its ability to non-invasively and visually assess lung ventilation, microstructure, and gas exchange function. Its recent clinical approval in China, the United States and several European countries, represents a significant advancement in pulmonary imaging. This review provides an overview of the latest developments in hyperpolarized 129Xe MRI technology for COPD assessment in China. It covers the progress in instrument development, advanced imaging techniques, artificial intelligence-driven reconstruction methods, molecular imaging, and the application of this technology in both COPD patients and animal models. Furthermore, the review explores potential technical innovations in 129Xe MRI and discusses future directions for its clinical applications, aiming to address existing challenges and expand the technology's impact in clinical practice.

Machine learning is changing osteoporosis detection: an integrative review.

Zhang Y, Ma M, Huang X, Liu J, Tian C, Duan Z, Fu H, Huang L, Geng B

pubmed logopapersJun 10 2025
Machine learning drives osteoporosis detection and screening with higher clinical accuracy and accessibility than traditional osteoporosis screening tools. This review takes a step-by-step view of machine learning for osteoporosis detection, providing insights into today's osteoporosis detection and the outlook for the future. The early diagnosis and risk detection of osteoporosis have always been crucial and challenging issues in the medical field. With the in-depth application of artificial intelligence technology, especially machine learning technology in the medical field, significant breakthroughs have been made in the application of early diagnosis and risk detection of osteoporosis. Machine learning is a multidimensional technical system that encompasses a wide variety of algorithm types. Machine learning algorithms have become relatively mature and developed over many years in medical data processing. They possess stable and accurate detection performance, laying a solid foundation for the detection and diagnosis of osteoporosis. As an essential part of the machine learning technical system, deep-learning algorithms are complex algorithm models based on artificial neural networks. Due to their robust image recognition and feature extraction capabilities, deep learning algorithms have become increasingly mature in the early diagnosis and risk assessment of osteoporosis in recent years, opening new ideas and approaches for the early and accurate diagnosis and risk detection of osteoporosis. This paper reviewed the latest research over the past decade, ranging from relatively basic and widely adopted machine learning algorithms combined with clinical data to more advanced deep learning techniques integrated with imaging data such as X-ray, CT, and MRI. By analyzing the application of algorithms at different stages, we found that these basic machine learning algorithms performed well when dealing with single structured data but encountered limitations when handling high-dimensional and unstructured imaging data. On the other hand, deep learning can significantly improve detection accuracy. It does this by automatically extracting image features, especially in image histological analysis. However, it faces challenges. These include the "black-box" problem, heavy reliance on large amounts of labeled data, and difficulties in clinical interpretability. These issues highlighted the importance of model interpretability in future machine learning research. Finally, we expect to develop a predictive model in the future that combines multimodal data (such as clinical indicators, blood biochemical indicators, imaging data, and genetic data) integrated with electronic health records and machine learning techniques. This model aims to present a skeletal health monitoring system that is highly accessible, personalized, convenient, and efficient, furthering the early detection and prevention of osteoporosis.

Artificial intelligence and endoanal ultrasound: pioneering automated differentiation of benign anal and sphincter lesions.

Mascarenhas M, Almeida MJ, Martins M, Mendes F, Mota J, Cardoso P, Mendes B, Ferreira J, Macedo G, Poças C

pubmed logopapersJun 10 2025
Anal injuries, such as lacerations and fissures, are challenging to diagnose because of their anatomical complexity. Endoanal ultrasound (EAUS) has proven to be a reliable tool for detailed visualization of anal structures but relies on expert interpretation. Artificial intelligence (AI) may offer a solution for more accurate and consistent diagnoses. This study aims to develop and test a convolutional neural network (CNN)-based algorithm for automatic classification of fissures and anal lacerations (internal and external) on EUAS. A single-center retrospective study analyzed 238 EUAS radial probe exams (April 2022-January 2024), categorizing 4528 frames into fissures (516), external lacerations (2174), and internal lacerations (1838), following validation by three experts. Data was split 80% for training and 20% for testing. Performance metrics included sensitivity, specificity, and accuracy. For external lacerations, the CNN achieved 82.5% sensitivity, 93.5% specificity, and 88.2% accuracy. For internal lacerations, achieved 91.7% sensitivity, 85.9% specificity, and 88.2% accuracy. For anal fissures, achieved 100% sensitivity, specificity, and accuracy. This first EUAS AI-assisted model for differentiating benign anal injuries demonstrates excellent diagnostic performance. It highlights AI's potential to improve accuracy, reduce reliance on expertise, and support broader clinical adoption. While currently limited by small dataset and single-center scope, this work represents a significant step towards integrating AI in proctology.

Arthroscopy-validated diagnostic performance of sub-5-min deep learning super-resolution 3T knee MRI in children and adolescents.

Vosshenrich J, Breit HC, Donners R, Obmann MM, Harder D, Ahlawat S, Walter SS, Serfaty A, Cantarelli Rodrigues T, Recht M, Stern SE, Fritz J

pubmed logopapersJun 10 2025
This study aims to determine the diagnostic performance of sub-5-min combined sixfold parallel imaging (PIx3)-simultaneous multislice (SMSx2)-accelerated deep learning (DL) super-resolution 3T knee MRI in children and adolescents. Children with painful knee conditions who underwent PIx3-SMSx2-accelerated DL super-resolution 3T knee MRI and arthroscopy between October 2022 and December 2023 were retrospectively included. Nine fellowship-trained musculoskeletal radiologists independently scored the MRI studies for image quality and the presence of artifacts (Likert scales, range: 1 = very bad/severe, 5 = very good/absent), as well as structural abnormalities. Interreader agreements and diagnostic performance testing was performed. Forty-four children (mean age: 15 ± 2 years; range: 9-17 years; 24 boys) who underwent knee MRI and arthroscopic surgery within 22 days (range, 2-133) were evaluated. Overall image quality was very good (median rating: 5 [IQR: 4-5]). Motion artifacts (5 [5-5]) and image noise (5 [4-5]) were absent. Arthroscopy-verified abnormalities were detected with good or better interreader agreement (κ ≥ 0.74). Sensitivity, specificity, accuracy, and AUC values were 100%, 84%, 93%, and 0.92, respectively, for anterior cruciate ligament tears; 71%, 97%, 93%, and 0.84 for medial meniscus tears; 65%, 100%, 86%, and 0.82 for lateral meniscus tears; 100%, 100%, 100%, and 1.00 for discoid lateral menisci; 100%, 95%, 96%, and 0.98 for medial patellofemoral ligament tears; and 55%, 100%, 98%, and 0.77 for articular cartilage defects. Clinical sub-5-min PIx3-SMSx2-accelerated DL super-resolution 3T knee MRI provides excellent image quality and high diagnostic performance for diagnosing internal derangement in children and adolescents.
Page 245 of 3993982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.