Sort by:
Page 24 of 58575 results

A vision transformer-convolutional neural network framework for decision-transparent dual-energy X-ray absorptiometry recommendations using chest low-dose CT.

Kuo DP, Chen YC, Cheng SJ, Hsieh KL, Li YT, Kuo PC, Chang YC, Chen CY

pubmed logopapersJul 1 2025
This study introduces an ensemble framework that integrates Vision Transformer (ViT) and Convolutional Neural Networks (CNN) models to leverage their complementary strengths, generating visualized and decision-transparent recommendations for dual-energy X-ray absorptiometry (DXA) scans from chest low-dose computed tomography (LDCT). The framework was developed using data from 321 individuals and validated with an independent test cohort of 186 individuals. It addresses two classification tasks: (1) distinguishing normal from abnormal bone mineral density (BMD) and (2) differentiating osteoporosis from non-osteoporosis. Three field-of-view (FOV) settings-fitFOV (entire vertebra), halfFOV (vertebral body only), and largeFOV (fitFOV + 20 %)-were analyzed to assess their impact on model performance. Model predictions were weighted and combined to enhance classification accuracy, and visualizations were generated to improve decision transparency. DXA scans were recommended for individuals classified as having abnormal BMD or osteoporosis. The ensemble framework significantly outperformed individual models in both classification tasks (McNemar test, p < 0.001). In the development cohort, it achieved 91.6 % accuracy for task 1 with largeFOV (area under the receiver operating characteristic curve [AUROC]: 0.97) and 86.0 % accuracy for task 2 with fitFOV (AUROC: 0.94). In the test cohort, it demonstrated 86.6 % accuracy for task 1 (AUROC: 0.93) and 76.9 % accuracy for task 2 (AUROC: 0.99). DXA recommendation accuracy was 91.6 % and 87.1 % in the development and test cohorts, respectively, with notably high accuracy for osteoporosis detection (98.7 % and 100 %). This combined ViT-CNN framework effectively assesses bone status from LDCT images, particularly when utilizing fitFOV and largeFOV settings. By visualizing classification confidence and vertebral abnormalities, the proposed framework enhances decision transparency and supports clinicians in making informed DXA recommendations following opportunistic osteoporosis screening.

Federated Learning in radiomics: A comprehensive meta-survey on medical image analysis.

Raza A, Guzzo A, Ianni M, Lappano R, Zanolini A, Maggiolini M, Fortino G

pubmed logopapersJul 1 2025
Federated Learning (FL) has emerged as a promising approach for collaborative medical image analysis while preserving data privacy, making it particularly suitable for radiomics tasks. This paper presents a systematic meta-analysis of recent surveys on Federated Learning in Medical Imaging (FL-MI), published in reputable venues over the past five years. We adopt the PRISMA methodology, categorizing and analyzing the existing body of research in FL-MI. Our analysis identifies common trends, challenges, and emerging strategies for implementing FL in medical imaging, including handling data heterogeneity, privacy concerns, and model performance in non-IID settings. The paper also highlights the most widely used datasets and a comparison of adopted machine learning models. Moreover, we examine FL frameworks in FL-MI applications, such as tumor detection, organ segmentation, and disease classification. We identify several research gaps, including the need for more robust privacy protection. Our findings provide a comprehensive overview of the current state of FL-MI and offer valuable directions for future research and development in this rapidly evolving field.

Magnetic resonance image generation using enhanced TransUNet in temporomandibular disorder patients.

Ha EG, Jeon KJ, Lee C, Kim DH, Han SS

pubmed logopapersJul 1 2025
Temporomandibular disorder (TMD) patients experience a variety of clinical symptoms, and MRI is the most effective tool for diagnosing temporomandibular joint (TMJ) disc displacement. This study aimed to develop a transformer-based deep learning model to generate T2-weighted (T2w) images from proton density-weighted (PDw) images, reducing MRI scan time for TMD patients. A dataset of 7226 images from 178 patients who underwent TMJ MRI examinations was used. The proposed model employed a generative adversarial network framework with a TransUNet architecture as the generator for image translation. Additionally, a disc segmentation decoder was integrated to improve image quality in the TMJ disc region. The model performance was evaluated using metrics such as the structural similarity index measure (SSIM), learned perceptual image patch similarity (LPIPS), and Fréchet inception distance (FID). Three experienced oral radiologists also performed a qualitative assessment through the mean opinion score (MOS). The model demonstrated high performance in generating T2w images from PDw images, achieving average SSIM, LPIPS, and FID values of 82.28%, 2.46, and 23.85, respectively, in the disc region. The model also obtained an average MOS score of 4.58, surpassing other models. Additionally, the model showed robust segmentation capabilities for the TMJ disc. The proposed model, integrating a transformer and a disc segmentation task, demonstrated strong performance in MR image generation, both quantitatively and qualitatively. This suggests its potential clinical significance in reducing MRI scan times for TMD patients while maintaining high image quality.

Acquisition and Reconstruction Techniques for Coronary CT Angiography: Current Status and Trends over the Past Decade.

Fukui R, Harashima S, Samejima W, Shimizu Y, Washizuka F, Kariyasu T, Nishikawa M, Yamaguchi H, Takeuchi H, Machida H

pubmed logopapersJul 1 2025
Coronary CT angiography (CCTA) has been widely used as a noninvasive modality for accurate assessment of coronary artery disease (CAD) in clinical settings. However, the following limitations of CCTA remain issues of interest: motion, stair-step, and blooming artifacts; suboptimal image noise; ionizing radiation exposure; administration of contrast medium; and complex imaging workflow. Various acquisition and reconstruction techniques have been introduced over the past decade to overcome these limitations. Low-tube-voltage acquisition using a high-output x-ray tube can reasonably reduce the contrast medium and radiation dose. Fast x-ray tube and gantry rotation, dual-source CT, and a motion-correction algorithm (MCA) can improve temporal resolution and reduce coronary motion artifacts. High-definition CT (HDCT), ultrahigh-resolution CT (UHRCT), and superresolution deep learning reconstruction (DLR) algorithms can improve the spatial resolution and delineation of the vessel lumen with coronary calcifications or stents by reducing blooming artifacts. Whole-heart coverage using area-detector CT can eliminate stair-step artifacts. The DLR algorithm can effectively reduce image noise and radiation dose while maintaining image quality, particularly during high-resolution acquisition using HDCT or UHRCT, during low-tube-voltage acquisition, or when imaging patients with a large body habitus. Automatic cardiac protocol selection, automatic optimal cardiac phase selection, and MCA can improve the imaging workflow for each CCTA examination. A sufficient understanding of current and novel acquisition and reconstruction techniques is important to enhance the clinical value of CCTA for noninvasive assessment of CAD. <sup>©</sup>RSNA, 2025 Supplemental material is available for this article.

Evaluating a large language model's accuracy in chest X-ray interpretation for acute thoracic conditions.

Ostrovsky AM

pubmed logopapersJul 1 2025
The rapid advancement of artificial intelligence (AI) has great ability to impact healthcare. Chest X-rays are essential for diagnosing acute thoracic conditions in the emergency department (ED), but interpretation delays due to radiologist availability can impact clinical decision-making. AI models, including deep learning algorithms, have been explored for diagnostic support, but the potential of large language models (LLMs) in emergency radiology remains largely unexamined. This study assessed ChatGPT's feasibility in interpreting chest X-rays for acute thoracic conditions commonly encountered in the ED. A subset of 1400 images from the NIH Chest X-ray dataset was analyzed, representing seven pathology categories: Atelectasis, Effusion, Emphysema, Pneumothorax, Pneumonia, Mass, and No Finding. ChatGPT 4.0, utilizing the "X-Ray Interpreter" add-on, was evaluated for its diagnostic performance across these categories. ChatGPT demonstrated high performance in identifying normal chest X-rays, with a sensitivity of 98.9 %, specificity of 93.9 %, and accuracy of 94.7 %. However, the model's performance varied across pathologies. The best results were observed in diagnosing pneumonia (sensitivity 76.2 %, specificity 93.7 %) and pneumothorax (sensitivity 77.4 %, specificity 89.1 %), while performance for atelectasis and emphysema was lower. ChatGPT demonstrates potential as a supplementary tool for differentiating normal from abnormal chest X-rays, with promising results for certain pathologies like pneumonia. However, its diagnostic accuracy for more subtle conditions requires improvement. Further research integrating ChatGPT with specialized image recognition models could enhance its performance, offering new possibilities in medical imaging and education.

Medical image translation with deep learning: Advances, datasets and perspectives.

Chen J, Ye Z, Zhang R, Li H, Fang B, Zhang LB, Wang W

pubmed logopapersJul 1 2025
Traditional medical image generation often lacks patient-specific clinical information, limiting its clinical utility despite enhancing downstream task performance. In contrast, medical image translation precisely converts images from one modality to another, preserving both anatomical structures and cross-modal features, thus enabling efficient and accurate modality transfer and offering unique advantages for model development and clinical practice. This paper reviews the latest advancements in deep learning(DL)-based medical image translation. Initially, it elaborates on the diverse tasks and practical applications of medical image translation. Subsequently, it provides an overview of fundamental models, including convolutional neural networks (CNNs), transformers, and state space models (SSMs). Additionally, it delves into generative models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Autoregressive Models (ARs), diffusion Models, and flow Models. Evaluation metrics for assessing translation quality are discussed, emphasizing their importance. Commonly used datasets in this field are also analyzed, highlighting their unique characteristics and applications. Looking ahead, the paper identifies future trends, challenges, and proposes research directions and solutions in medical image translation. It aims to serve as a valuable reference and inspiration for researchers, driving continued progress and innovation in this area.

Use of Artificial Intelligence and Machine Learning in Critical Care Ultrasound.

Peck M, Conway H

pubmed logopapersJul 1 2025
This article explores the transformative potential of artificial intelligence (AI) in critical care ultrasound AI technologies, notably deep learning and convolutional neural networks, now assisting in image acquisition, interpretation, and quality assessment, streamlining workflow and reducing operator variability. By automating routine tasks, AI enhances diagnostic accuracy and bridges training gaps, potentially democratizing advanced ultrasound techniques. Furthermore, AI's integration into tele-ultrasound systems shows promise in extending expert-level diagnostics to underserved areas, significantly broadening access to quality care. The article highlights the ongoing need for explainable AI systems to gain clinician trust and facilitate broader adoption.

The Chest X- Ray: The Ship has Sailed, But Has It?

Iacovino JR

pubmed logopapersJul 1 2025
In the past, the chest X-ray (CXR) was a traditional age and amount requirement used to assess potential mortality risk in life insurance applicants. It fell out of favor due to inconvenience to the applicant, cost, and lack of protective value. With the advent of deep learning techniques, can the results of the CXR, as a requirement, now add additional value to underwriting risk analysis?

Hybrid model integration with explainable AI for brain tumor diagnosis: a unified approach to MRI analysis and prediction.

Vamsidhar D, Desai P, Joshi S, Kolhar S, Deshpande N, Gite S

pubmed logopapersJul 1 2025
Effective treatment for brain tumors relies on accurate detection because this is a crucial health condition. Medical imaging plays a pivotal role in improving tumor detection and diagnosis in the early stage. This study presents two approaches to the tumor detection problem focusing on the healthcare domain. A combination of image processing, vision transformer (ViT), and machine learning algorithms is the first approach that focuses on analyzing medical images. The second approach is the parallel model integration technique, where we first integrate two pre-trained deep learning models, ResNet101, and Xception, followed by applying local interpretable model-agnostic explanations (LIME) to explain the model. The results obtained an accuracy of 98.17% for the combination of vision transformer, random forest and contrast-limited adaptive histogram equalization and 99. 67% for the parallel model integration (ResNet101 and Xception). Based on these results, this paper proposed the deep learning approach-parallel model integration technique as the most effective method. Future work aims to extend the model to multi-class classification for tumor type detection and improve model generalization for broader applicability.
Page 24 of 58575 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.