Sort by:
Page 236 of 3623619 results

EfficientNet-Based Attention Residual U-Net With Guided Loss for Breast Tumor Segmentation in Ultrasound Images.

Jasrotia H, Singh C, Kaur S

pubmed logopapersJul 1 2025
Breast cancer poses a major health concern for women globally. Effective segmentation of breast tumors for ultrasound images is crucial for early diagnosis and treatment. Conventional convolutional neural networks have shown promising results in this domain but face challenges due to image complexities and are computationally expensive, limiting their practical application in real-time clinical settings. We propose Eff-AResUNet-GL, a segmentation model using EfficienetNet-B3 as the encoder. This design integrates attention gates in skip connections to focus on significant features and residual blocks in the decoder to retain details and reduce gradient loss. Additionally, guided loss functions are applied at each decoder layer to generate better features, subsequently improving segmentation accuracy. Experimental results on BUSIS and Dataset B demonstrate that Eff-AResUNet-GL achieves superior performance and computational efficiency compared to state-of-the-art models, showing robustness in handling complex breast ultrasound images. Eff-AResUNet-GL offers a practical, high-performing solution for breast tumor segmentation, demonstrating potential clinical through improved segmentation accuracy and efficiency.

Federated Learning in radiomics: A comprehensive meta-survey on medical image analysis.

Raza A, Guzzo A, Ianni M, Lappano R, Zanolini A, Maggiolini M, Fortino G

pubmed logopapersJul 1 2025
Federated Learning (FL) has emerged as a promising approach for collaborative medical image analysis while preserving data privacy, making it particularly suitable for radiomics tasks. This paper presents a systematic meta-analysis of recent surveys on Federated Learning in Medical Imaging (FL-MI), published in reputable venues over the past five years. We adopt the PRISMA methodology, categorizing and analyzing the existing body of research in FL-MI. Our analysis identifies common trends, challenges, and emerging strategies for implementing FL in medical imaging, including handling data heterogeneity, privacy concerns, and model performance in non-IID settings. The paper also highlights the most widely used datasets and a comparison of adopted machine learning models. Moreover, we examine FL frameworks in FL-MI applications, such as tumor detection, organ segmentation, and disease classification. We identify several research gaps, including the need for more robust privacy protection. Our findings provide a comprehensive overview of the current state of FL-MI and offer valuable directions for future research and development in this rapidly evolving field.

Self-supervised network predicting neoadjuvant chemoradiotherapy response to locally advanced rectal cancer patients.

Chen Q, Dang J, Wang Y, Li L, Gao H, Li Q, Zhang T, Bai X

pubmed logopapersJul 1 2025
Radiographic imaging is a non-invasive technique of considerable importance for evaluating tumor treatment response. However, redundancy in CT data and the lack of labeled data make it challenging to accurately assess the response of locally advanced rectal cancer (LARC) patients to neoadjuvant chemoradiotherapy (nCRT) using current imaging indicators. In this study, we propose a novel learning framework to automatically predict the response of LARC patients to nCRT. Specifically, we develop a deep learning network called the Expand Intensive Attention Network (EIA-Net), which enhances the network's feature extraction capability through cascaded 3D convolutions and coordinate attention. Instance-oriented collaborative self-supervised learning (IOC-SSL) is proposed to leverage unlabeled data for training, reducing the reliance on labeled data. In a dataset consisting of 1,575 volumes, the proposed method achieves an AUC score of 0.8562. The dataset includes two distinct parts: the self-supervised dataset containing 1,394 volumes and the supervised dataset comprising 195 volumes. Analysis of the lifetime predictions reveals that patients with pathological complete response (pCR) predicted by EIA-Net exhibit better overall survival (OS) compared to non-pCR patients with LARC. The retrospective study demonstrates that imaging-based pCR prediction for patients with low rectal cancer can assist clinicians in making informed decisions regarding the need for Miles operation, thereby improving the likelihood of anal preservation, with an AUC of 0.8222. These results underscore the potential of our method to enhance clinical decision-making, offering a promising tool for personalized treatment and improved patient outcomes in LARC management.

Association between muscle mass assessed by an artificial intelligence-based ultrasound imaging system and quality of life in patients with cancer-related malnutrition.

de Luis D, Cebria A, Primo D, Izaola O, Godoy EJ, Gomez JJL

pubmed logopapersJul 1 2025
Emerging evidence suggests that diminished skeletal muscle mass is associated with lower health-related quality of life (HRQOL) in individuals with cancer. There are no studies that we know of in the literature that use ultrasound system to evaluate muscle mass and its relationship with HRQOL. The aim of our study was to evaluate the relationship between HRQOL determined by the EuroQol-5D tool and muscle mass determined by an artificial intelligence-based ultrasound system at the rectus femoris (RF) level in outpatients with cancer. Anthropometric data by bioimpedance (BIA), muscle mass by ultrasound by an artificial intelligence-based at the RF level, biochemistry determination, dynamometry and HRQOL were measured. A total of 158 patients with cancer were included with a mean age of 70.6 ±9.8 years. The mean body mass index was 24.4 ± 4.1 kg/m<sup>2</sup> with a mean body weight of 63.9 ± 11.7 kg (38% females and 62% males). A total of 57 patients had a severe degree of malnutrition (36.1%). The distribution of the location of the tumors was 66 colon-rectum cancer (41.7%), 56 esophageal-stomach cancer (35.4%), 16 pancreatic cancer (10.1%), and 20.2% other locations. A positive correlation cross-sectional area (CSA), muscle thickness (MT), pennation angle, (BIA) parameters, and muscle strength was detected. Patients in the groups below the median for the visual scale and the EuroQol-5D index had lower CSA and MT, BIA, and muscle strength values. CSA (beta 4.25, 95% CI 2.03-6.47) remained in the multivariate model as dependent variable (visual scale) and muscle strength (beta 0.008, 95% CI 0.003-0.14) with EuroQol-5D index. Muscle strength and pennation angle by US were associated with better score in dimensions of mobility, self-care, and daily activities. CSA, MT, and pennation angle of RF determined by an artificial intelligence-based muscle ultrasound system in outpatients with cancer were related to HRQOL determined by EuroQol-5D.

Multi-label pathology editing of chest X-rays with a Controlled Diffusion Model.

Chu H, Qi X, Wang H, Liang Y

pubmed logopapersJul 1 2025
Large-scale generative models have garnered significant attention in the field of medical imaging, particularly for image editing utilizing diffusion models. However, current research has predominantly concentrated on pathological editing involving single or a limited number of labels, making it challenging to achieve precise modifications. Inaccurate alterations may lead to substantial discrepancies between the generated and original images, thereby impacting the clinical applicability of these models. This paper presents a diffusion model with untangling capabilities applied to chest X-ray image editing, incorporating a mask-based mechanism for bone and organ information. We successfully perform multi-label pathological editing of chest X-ray images without compromising the integrity of the original thoracic structure. The proposed technology comprises a chest X-ray image classifier and an intricate organ mask; the classifier supplies essential feature labels that require untangling for the stabilized diffusion model, while the complex organ mask facilitates directed and controllable edits to chest X-rays. We assessed the outcomes of our proposed algorithm, named Chest X-rays_Mpe, using MS-SSIM and CLIP scores alongside qualitative evaluations conducted by radiology experts. The results indicate that our approach surpasses existing algorithms across both quantitative and qualitative metrics.

Cycle-conditional diffusion model for noise correction of diffusion-weighted images using unpaired data.

Zhu P, Liu C, Fu Y, Chen N, Qiu A

pubmed logopapersJul 1 2025
Diffusion-weighted imaging (DWI) is a key modality for studying brain microstructure, but its signals are highly susceptible to noise due to the thermal motion of water molecules and interactions with tissue microarchitecture, leading to significant signal attenuation and a low signal-to-noise ratio (SNR). In this paper, we propose a novel approach, a Cycle-Conditional Diffusion Model (Cycle-CDM) using unpaired data learning, aimed at improving DWI quality and reliability through noise correction. Cycle-CDM leverages a cycle-consistent translation architecture to bridge the domain gap between noise-contaminated and noise-free DWIs, enabling the restoration of high-quality images without requiring paired datasets. By utilizing two conditional diffusion models, Cycle-CDM establishes data interrelationships between the two types of DWIs, while incorporating synthesized anatomical priors from the cycle translation process to guide noise removal. In addition, we introduce specific constraints to preserve anatomical fidelity, allowing Cycle-CDM to effectively learn the underlying noise distribution and achieve accurate denoising. Our experiments conducted on simulated datasets, as well as children and adolescents' datasets with strong clinical relevance. Our results demonstrate that Cycle-CDM outperforms comparative methods, such as U-Net, CycleGAN, Pix2Pix, MUNIT and MPPCA, in terms of noise correction performance. We demonstrated that Cycle-CDM can be generalized to DWIs with head motion when they were acquired using different MRI scannsers. Importantly, the denoised DWI data produced by Cycle-CDM exhibit accurate preservation of underlying tissue microstructure, thus substantially improving their medical applicability.

Deep learning-assisted detection of meniscus and anterior cruciate ligament combined tears in adult knee magnetic resonance imaging: a crossover study with arthroscopy correlation.

Behr J, Nich C, D'Assignies G, Zavastin C, Zille P, Herpe G, Triki R, Grob C, Pujol N

pubmed logopapersJul 1 2025
We aimed to compare the diagnostic performance of physicians in the detection of arthroscopically confirmed meniscus and anterior cruciate ligament (ACL) tears on knee magnetic resonance imaging (MRI), with and without assistance from a deep learning (DL) model. We obtained preoperative MR images from 88 knees of patients who underwent arthroscopic meniscal repair, with or without ACL reconstruction. Ninety-eight MR images of knees without signs of meniscus or ACL tears were obtained from a publicly available database after matching on age and ACL status (normal or torn), resulting in a global dataset of 186 MRI examinations. The Keros<sup>®</sup> (Incepto, Paris) DL algorithm, previously trained for the detection and characterization of meniscus and ACL tears, was used for MRI assessment. Magnetic resonance images were individually, and blindly annotated by three physicians and the DL algorithm. After three weeks, the three human raters repeated image assessment with model assistance, performed in a different order. The Keros<sup>®</sup> algorithm achieved an area under the curve (AUC) of 0.96 (95% CI 0.93, 0.99), 0.91 (95% CI 0.85, 0.96), and 0.99 (95% CI 0.98, 0.997) in the detection of medial meniscus, lateral meniscus and ACL tears, respectively. With model assistance, physicians achieved higher sensitivity (91% vs. 83%, p = 0.04) and similar specificity (91% vs. 87%, p = 0.09) in the detection of medial meniscus tears. Regarding lateral meniscus tears, sensitivity and specificity were similar with/without model assistance. Regarding ACL tears, physicians achieved higher specificity when assisted by the algorithm (70% vs. 51%, p = 0.01) but similar sensitivity with/without model assistance (93% vs. 96%, p = 0.13). The current model consistently helped physicians in the detection of medial meniscus and ACL tears, notably when they were combined. Diagnostic study, Level III.

ConnectomeAE: Multimodal brain connectome-based dual-branch autoencoder and its application in the diagnosis of brain diseases.

Zheng Q, Nan P, Cui Y, Li L

pubmed logopapersJul 1 2025
Exploring the dependencies between multimodal brain networks and integrating node features to enhance brain disease diagnosis remains a significant challenge. Some work has examined only brain connectivity changes in patients, ignoring important information about radiomics features such as shape and texture of individual brain regions in structural images. To this end, this study proposed a novel deep learning approach to integrate multimodal brain connectome information and regional radiomics features for brain disease diagnosis. A dual-branch autoencoder (ConnectomeAE) based on multimodal brain connectomes was proposed for brain disease diagnosis. Specifically, a matrix of radiomics feature extracted from structural magnetic resonance image (MRI) was used as Rad_AE branch inputs for learning important brain region features. Functional brain network built from functional MRI image was used as inputs to Cycle_AE for capturing brain disease-related connections. By separately learning node features and connection features from multimodal brain networks, the method demonstrates strong adaptability in diagnosing different brain diseases. ConnectomeAE was validated on two publicly available datasets. The experimental results show that ConnectomeAE achieved excellent diagnostic performance with an accuracy of 70.7 % for autism spectrum disorder and 90.5 % for Alzheimer's disease. A comparison of training time with other methods indicated that ConnectomeAE exhibits simplicity and efficiency suitable for clinical applications. Furthermore, the interpretability analysis of the model aligned with previous studies, further supporting the biological basis of ConnectomeAE. ConnectomeAE could effectively leverage the complementary information between multimodal brain connectomes for brain disease diagnosis. By separately learning radiomic node features and connectivity features, ConnectomeAE demonstrated good adaptability to different brain disease classification tasks.

"Recon-all-clinical": Cortical surface reconstruction and analysis of heterogeneous clinical brain MRI.

Gopinath K, Greve DN, Magdamo C, Arnold S, Das S, Puonti O, Iglesias JE

pubmed logopapersJul 1 2025
Surface-based analysis of the cerebral cortex is ubiquitous in human neuroimaging with MRI. It is crucial for tasks like cortical registration, parcellation, and thickness estimation. Traditionally, such analyses require high-resolution, isotropic scans with good gray-white matter contrast, typically a T1-weighted scan with 1 mm resolution. This requirement precludes application of these techniques to most MRI scans acquired for clinical purposes, since they are often anisotropic and lack the required T1-weighted contrast. To overcome this limitation and enable large-scale neuroimaging studies using vast amounts of existing clinical data, we introduce recon-all-clinical, a novel methodology for cortical reconstruction, registration, parcellation, and thickness estimation for clinical brain MRI scans of any resolution and contrast. Our approach employs a hybrid analysis method that combines a convolutional neural network (CNN) trained with domain randomization to predict signed distance functions (SDFs), and classical geometry processing for accurate surface placement while maintaining topological and geometric constraints. The method does not require retraining for different acquisitions, thus simplifying the analysis of heterogeneous clinical datasets. We evaluated recon-all-clinical on multiple public datasets like ADNI, HCP, AIBL, OASIS and including a large clinical dataset of over 9,500 scans. The results indicate that our method produces geometrically precise cortical reconstructions across different MRI contrasts and resolutions, consistently achieving high accuracy in parcellation. Cortical thickness estimates are precise enough to capture aging effects, independently of MRI contrast, even though accuracy varies with slice thickness. Our method is publicly available at https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all-clinical, enabling researchers to perform detailed cortical analysis on the huge amounts of already existing clinical MRI scans. This advancement may be particularly valuable for studying rare diseases and underrepresented populations where research-grade MRI data is scarce.

Deep Learning Model for Real-Time Nuchal Translucency Assessment at Prenatal US.

Zhang Y, Yang X, Ji C, Hu X, Cao Y, Chen C, Sui H, Li B, Zhen C, Huang W, Deng X, Yin L, Ni D

pubmed logopapersJul 1 2025
Purpose To develop and evaluate an artificial intelligence-based model for real-time nuchal translucency (NT) plane identification and measurement in prenatal US assessments. Materials and Methods In this retrospective multicenter study conducted from January 2022 to October 2023, the Automated Identification and Measurement of NT (AIM-NT) model was developed and evaluated using internal and external datasets. NT plane assessment, including identification of the NT plane and measurement of NT thickness, was independently conducted by AIM-NT and experienced radiologists, with the results subsequently audited by radiology specialists and accuracy compared between groups. To assess alignment of artificial intelligence with radiologist workflow, discrepancies between the AIM-NT model and radiologists in NT plane identification time and thickness measurements were evaluated. Results The internal dataset included a total of 3959 NT images from 3153 fetuses, and the external dataset included 267 US videos from 267 fetuses. On the internal testing dataset, AIM-NT achieved an area under the receiver operating characteristic curve of 0.92 for NT plane identification. On the external testing dataset, there was no evidence of differences between AIM-NT and radiologists in NT plane identification accuracy (88.8% vs 87.6%, <i>P</i> = .69) or NT thickness measurements on standard and nonstandard NT planes (<i>P</i> = .29 and .59). AIM-NT demonstrated high consistency with radiologists in NT plane identification time, with 1-minute discrepancies observed in 77.9% of cases, and NT thickness measurements, with a mean difference of 0.03 mm and mean absolute error of 0.22 mm (95% CI: 0.19, 0.25). Conclusion AIM-NT demonstrated high accuracy in identifying the NT plane and measuring NT thickness on prenatal US images, showing minimal discrepancies with radiologist workflow. <b>Keywords:</b> Ultrasound, Fetus, Segmentation, Feature Detection, Diagnosis, Convolutional Neural Network (CNN) <i>Supplemental material is available for this article.</i> © RSNA, 2025 See also commentary by Horii in this issue.
Page 236 of 3623619 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.