Sort by:
Page 229 of 2332330 results

Automated Detection of Black Hole Sign for Intracerebral Hemorrhage Patients Using Self-Supervised Learning.

Wang H, Schwirtlich T, Houskamp EJ, Hutch MR, Murphy JX, do Nascimento JS, Zini A, Brancaleoni L, Giacomozzi S, Luo Y, Naidech AM

pubmed logopapersMay 7 2025
Intracerebral Hemorrhage (ICH) is a devastating form of stroke. Hematoma expansion (HE), growth of the hematoma on interval scans, predicts death and disability. Accurate prediction of HE is crucial for targeted interventions to improve patient outcomes. The black hole sign (BHS) on non-contrast computed tomography (CT) scans is a predictive marker for HE. An automated method to recognize the BHS and predict HE could speed precise patient selection for treatment. In. this paper, we presented a novel framework leveraging self-supervised learning (SSL) techniques for BHS identification on head CT images. A ResNet-50 encoder model was pre-trained on over 1.7 million unlabeled head CT images. Layers for binary classification were added on top of the pre-trained model. The resulting model was fine-tuned using the training data and evaluated on the held-out test set to collect AUC and F1 scores. The evaluations were performed on scan and slice levels. We ran different panels, one using two multi-center datasets for external validation and one including parts of them in the pre-training RESULTS: Our model demonstrated strong performance in identifying BHS when compared with the baseline model. Specifically, the model achieved scan-level AUC scores between 0.75-0.89 and F1 scores between 0.60-0.70. Furthermore, it exhibited robustness and generalizability across an external dataset, achieving a scan-level AUC score of up to 0.85 and an F1 score of up to 0.60, while it performed less well on another dataset with more heterogeneous samples. The negative effects could be mitigated after including parts of the external datasets in the fine-tuning process. This study introduced a novel framework integrating SSL into medical image classification, particularly on BHS identification from head CT scans. The resulting pre-trained head CT encoder model showed potential to minimize manual annotation, which would significantly reduce labor, time, and costs. After fine-tuning, the framework demonstrated promising performance for a specific downstream task, identifying the BHS to predict HE, upon comprehensive evaluation on diverse datasets. This approach holds promise for enhancing medical image analysis, particularly in scenarios with limited data availability. ICH = Intracerebral Hemorrhage; HE = Hematoma Expansion; BHS = Black Hole Sign; CT = Computed Tomography; SSL = Self-supervised Learning; AUC = Area Under the receiver operator Curve; CNN = Convolutional Neural Network; SimCLR = Simple framework for Contrastive Learning of visual Representation; HU = Hounsfield Unit; CLAIM = Checklist for Artificial Intelligence in Medical Imaging; VNA = Vendor Neutral Archive; DICOM = Digital Imaging and Communications in Medicine; NIfTI = Neuroimaging Informatics Technology Initiative; INR = International Normalized Ratio; GPU= Graphics Processing Unit; NIH= National Institutes of Health.

Artificial Intelligence based radiomic model in Craniopharyngiomas: A Systematic Review and Meta-Analysis on Diagnosis, Segmentation, and Classification.

Mohammadzadeh I, Hajikarimloo B, Niroomand B, Faizi N, Faizi N, Habibi MA, Mohammadzadeh S, Soltani R

pubmed logopapersMay 7 2025
Craniopharyngiomas (CPs) are rare, benign brain tumors originating from Rathke's pouch remnants, typically located in the sellar/parasellar region. Accurate differentiation is crucial due to varying prognoses, with ACPs having higher recurrence and worse outcomes. MRI struggles with overlapping features, complicating diagnosis. this study evaluates the role of Artificial Intelligence (AI) in diagnosing, segmenting, and classifying CPs, emphasizing its potential to improve clinical decision-making, particularly for radiologists and neurosurgeons. This systematic review and meta-analysis assess AI applications in diagnosing, segmenting, and classifying on CPs patients. a comprehensive search was conducted across PubMed, Scopus, Embase and Web of Science for studies employing AI models in patients with CP. Performance metrics such as sensitivity, specificity, accuracy, and area under the curve (AUC) were extracted and synthesized. Eleven studies involving 1916 patients were included in the analysis. The pooled results revealed a sensitivity of 0.740 (95% CI: 0.673-0.808), specificity of 0.813 (95% CI: 0.729-0.898), and accuracy of 0.746 (95% CI: 0.679-0.813). The area under the curve (AUC) for diagnosis was 0.793 (95% CI: 0.719-0.866), and for classification, it was 0.899 (95% CI: 0.846-0.951). The sensitivity for segmentation was found to be 0.755 (95% CI: 0.704-0.805). AI-based models show strong potential in enhancing the diagnostic accuracy and clinical decision-making process for CPs. These findings support the use of AI tools for more reliable preoperative assessment, leading to better treatment planning and patient outcomes. Further research with larger datasets is needed to optimize and validate AI applications in clinical practice.

A deep learning model combining circulating tumor cells and radiological features in the multi-classification of mediastinal lesions in comparison with thoracic surgeons: a large-scale retrospective study.

Wang F, Bao M, Tao B, Yang F, Wang G, Zhu L

pubmed logopapersMay 7 2025
CT images and circulating tumor cells (CTCs) are indispensable for diagnosing the mediastinal lesions by providing radiological and intra-tumoral information. This study aimed to develop and validate a deep multimodal fusion network (DMFN) combining CTCs and CT images for the multi-classification of mediastinal lesions. In this retrospective diagnostic study, we enrolled 1074 patients with 1500 enhanced CT images and 1074 CTCs results between Jan 1, 2020, and Dec 31, 2023. Patients were divided into the training cohort (n = 434), validation cohort (n = 288), and test cohort (n = 352). The DMFN and monomodal convolutional neural network (CNN) models were developed and validated using the CT images and CTCs results. The diagnostic performances of DMFN and monomodal CNN models were based on the Paraffin-embedded pathologies from surgical tissues. The predictive abilities were compared with thoracic resident physicians, attending physicians, and chief physicians by the area under the receiver operating characteristic (ROC) curve, and diagnostic results were visualized in the heatmap. For binary classification, the predictive performances of DMFN (AUC = 0.941, 95% CI 0.901-0.982) were better than the monomodal CNN model (AUC = 0.710, 95% CI 0.664-0.756). In addition, the DMFN model achieved better predictive performances than the thoracic chief physicians, attending physicians, and resident physicians (P = 0.054, 0.020, 0.016) respectively. For the multiclassification, the DMFN achieved encouraging predictive abilities (AUC = 0.884, 95%CI 0.837-0.931), significantly outperforming the monomodal CNN (AUC = 0.722, 95%CI 0.705-0.739), also better than the chief physicians (AUC = 0.787, 95%CI 0.714-0.862), attending physicians (AUC = 0.632, 95%CI 0.612-0.654), and resident physicians (AUC = 0.541, 95%CI 0.508-0.574). This study showed the feasibility and effectiveness of CNN model combing CT images and CTCs levels in predicting the diagnosis of mediastinal lesions. It could serve as a useful method to assist thoracic surgeons in improving diagnostic accuracy and has the potential to make management decisions.

Deep Learning for Classification of Solid Renal Parenchymal Tumors Using Contrast-Enhanced Ultrasound.

Bai Y, An ZC, Du LF, Li F, Cai YY

pubmed logopapersMay 6 2025
The purpose of this study is to assess the ability of deep learning models to classify different subtypes of solid renal parenchymal tumors using contrast-enhanced ultrasound (CEUS) images and to compare their classification performance. A retrospective study was conducted using CEUS images of 237 kidney tumors, including 46 angiomyolipomas (AML), 118 clear cell renal cell carcinomas (ccRCC), 48 papillary RCCs (pRCC), and 25 chromophobe RCCs (chRCC), collected from January 2017 to December 2019. Two deep learning models, based on the ResNet-18 and RepVGG architectures, were trained and validated to distinguish between these subtypes. The models' performance was assessed using sensitivity, specificity, positive predictive value, negative predictive value, F1 score, Matthews correlation coefficient, accuracy, area under the receiver operating characteristic curve (AUC), and confusion matrix analysis. Class activation mapping (CAM) was applied to visualize the specific regions that contributed to the models' predictions. The ResNet-18 and RepVGG-A0 models achieved an overall accuracy of 76.7% and 84.5% across all four subtypes. The AUCs for AML, ccRCC, pRCC, and chRCC were 0.832, 0.829, 0.806, and 0.795 for the ResNet-18 model, compared to 0.906, 0.911, 0.840, and 0.827 for the RepVGG-A0 model, respectively. The deep learning models could reliably differentiate between various histological subtypes of renal tumors using CEUS images in an objective and non-invasive manner.

Comprehensive Cerebral Aneurysm Rupture Prediction: From Clustering to Deep Learning

Zakeri, M., Atef, A., Aziznia, M., Jafari, A.

medrxiv logopreprintMay 6 2025
Cerebral aneurysm is a silent yet prevalent condition that affects a substantial portion of the global population. Aneurysms can develop due to various factors and present differently, necessitating diverse treatment approaches. Choosing the appropriate treatment upon diagnosis is paramount, as the severity of the disease dictates the course of action. The vulnerability of an aneurysm, particularly in the circle of Willis, is a critical concern; rupture can lead to irreversible consequences, including death. The primary objective of this study is to predict the rupture status of cerebral aneurysms using a comprehensive dataset that includes clinical, morphological, and hemodynamic data extracted from blood flow simulations of patients with actual vessels. Our goal is to provide valuable insights that can aid in treatment decision-making and potentially save the lives of future patients. Diagnosing and predicting the rupture status of aneurysms based solely on brain scans poses a significant challenge, often with limited accuracy, even for experienced physicians. However, harnessing statistical and machine learning (ML) techniques can enhance rupture prediction and treatment strategy selection. We employed a diverse set of supervised and unsupervised algorithms, training them on a database comprising over 700 cerebral aneurysms, which included 55 different parameters: 3 clinical, 35 morphological, and 17 hemodynamic features. Two of our models including stochastic gradient descent (SGD) and multi-layer perceptron (MLP) achieved a maximum area under the curve (AUC) of 0.86, a precision rate of 0.86, and a recall rate of 0.90 for prediction of cerebral aneurysm rupture. Given the sensitivity of the data and the critical nature of the condition, recall is a more vital parameter than accuracy and precision; our study achieved an acceptable recall score. Key features for rupture prediction included ellipticity index, low shear area ratio, and irregularity. Additionally, a one-dimensional CNN model predicted rupture status along a continuous spectrum, achieving 0.78 accuracy on the testing dataset, providing nuanced insights into rupture propensity.

STG: Spatiotemporal Graph Neural Network with Fusion and Spatiotemporal Decoupling Learning for Prognostic Prediction of Colorectal Cancer Liver Metastasis

Yiran Zhu, Wei Yang, Yan su, Zesheng Li, Chengchang Pan, Honggang Qi

arxiv logopreprintMay 6 2025
We propose a multimodal spatiotemporal graph neural network (STG) framework to predict colorectal cancer liver metastasis (CRLM) progression. Current clinical models do not effectively integrate the tumor's spatial heterogeneity, dynamic evolution, and complex multimodal data relationships, limiting their predictive accuracy. Our STG framework combines preoperative CT imaging and clinical data into a heterogeneous graph structure, enabling joint modeling of tumor distribution and temporal evolution through spatial topology and cross-modal edges. The framework uses GraphSAGE to aggregate spatiotemporal neighborhood information and leverages supervised and contrastive learning strategies to enhance the model's ability to capture temporal features and improve robustness. A lightweight version of the model reduces parameter count by 78.55%, maintaining near-state-of-the-art performance. The model jointly optimizes recurrence risk regression and survival analysis tasks, with contrastive loss improving feature representational discriminability and cross-modal consistency. Experimental results on the MSKCC CRLM dataset show a time-adjacent accuracy of 85% and a mean absolute error of 1.1005, significantly outperforming existing methods. The innovative heterogeneous graph construction and spatiotemporal decoupling mechanism effectively uncover the associations between dynamic tumor microenvironment changes and prognosis, providing reliable quantitative support for personalized treatment decisions.

A Vision-Language Model for Focal Liver Lesion Classification

Song Jian, Hu Yuchang, Wang Hui, Chen Yen-Wei

arxiv logopreprintMay 6 2025
Accurate classification of focal liver lesions is crucial for diagnosis and treatment in hepatology. However, traditional supervised deep learning models depend on large-scale annotated datasets, which are often limited in medical imaging. Recently, Vision-Language models (VLMs) such as Contrastive Language-Image Pre-training model (CLIP) has been applied to image classifications. Compared to the conventional convolutional neural network (CNN), which classifiers image based on visual information only, VLM leverages multimodal learning with text and images, allowing it to learn effectively even with a limited amount of labeled data. Inspired by CLIP, we pro-pose a Liver-VLM, a model specifically designed for focal liver lesions (FLLs) classification. First, Liver-VLM incorporates class information into the text encoder without introducing additional inference overhead. Second, by calculating the pairwise cosine similarities between image and text embeddings and optimizing the model with a cross-entropy loss, Liver-VLM ef-fectively aligns image features with class-level text features. Experimental results on MPCT-FLLs dataset demonstrate that the Liver-VLM model out-performs both the standard CLIP and MedCLIP models in terms of accuracy and Area Under the Curve (AUC). Further analysis shows that using a lightweight ResNet18 backbone enhances classification performance, particularly under data-constrained conditions.

Multi-task learning for joint prediction of breast cancer histological indicators in dynamic contrast-enhanced magnetic resonance imaging.

Sun R, Li X, Han B, Xie Y, Nie S

pubmed logopapersMay 6 2025
Achieving efficient analysis of multiple pathological indicators has great significance for breast cancer prognosis and therapeutic decision-making. In this study, we aim to explore a deep multi-task learning (MTL) framework for collaborative prediction of histological grade and proliferation marker (Ki-67) status in breast cancer using multi-phase dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In the novel design of hybrid multi-task architecture (HMT-Net), co-representative features are explicitly distilled using a feature extraction backbone. A customized prediction network is then introduced to perform soft-parameter sharing between two correlated tasks. Specifically, task-common and task-specific knowledge is transmitted into tower layers for informative interactions. Furthermore, low-level feature maps containing tumor edges and texture details are recaptured by a hard-parameter sharing branch, which are then incorporated into the tower layer for each subtask. Finally, the probabilities of two histological indicators, predicted in the multi-phase DCE-MRI, are separately fused using a decision-level fusion strategy. Experimental results demonstrate that the proposed HMT-Net achieves optimal discriminative performance over other recent MTL architectures and deep models based on single image series, with the area under the receiver operating characteristic curve of 0.908 for tumor grade and 0.694 for Ki-67 status. Benefiting from the innovative HMT-Net, our proposed method elucidates its strong robustness and flexibility in the collaborative prediction task of breast biomarkers. Multi-phase DCE-MRI is expected to contribute valuable dynamic information for breast cancer pathological assessment in a non-invasive manner.

New Targets for Imaging in Nuclear Medicine.

Brink A, Paez D, Estrada Lobato E, Delgado Bolton RC, Knoll P, Korde A, Calapaquí Terán AK, Haidar M, Giammarile F

pubmed logopapersMay 6 2025
Nuclear medicine is rapidly evolving with new molecular imaging targets and advanced computational tools that promise to enhance diagnostic precision and personalized therapy. Recent years have seen a surge in novel PET and SPECT tracers, such as those targeting prostate-specific membrane antigen (PSMA) in prostate cancer, fibroblast activation protein (FAP) in tumor stroma, and tau protein in neurodegenerative disease. These tracers enable more specific visualization of disease processes compared to traditional agents, fitting into a broader shift toward precision imaging in oncology and neurology. In parallel, artificial intelligence (AI) and machine learning techniques are being integrated into tracer development and image analysis. AI-driven methods can accelerate radiopharmaceutical discovery, optimize pharmacokinetic properties, and assist in interpreting complex imaging datasets. This editorial provides an expanded overview of emerging imaging targets and techniques, including theranostic applications that pair diagnosis with radionuclide therapy, and examines how AI is augmenting nuclear medicine. We discuss the implications of these advancements within the field's historical trajectory and address the regulatory, manufacturing, and clinical challenges that must be navigated. Innovations in molecular targeting and AI are poised to transform nuclear medicine practice, enabling more personalized diagnostics and radiotheranostic strategies in the era of precision healthcare.

Opinions and preferences regarding artificial intelligence use in healthcare delivery: results from a national multi-site survey of breast imaging patients.

Dontchos BN, Dodelzon K, Bhole S, Edmonds CE, Mullen LA, Parikh JR, Daly CP, Epling JA, Christensen S, Grimm LJ

pubmed logopapersMay 6 2025
Artificial intelligence (AI) utilization is growing, but patient perceptions of AI are unclear. Our objective was to understand patient perceptions of AI through a multi-site survey of breast imaging patients. A 36-question survey was distributed to eight US practices (6 academic, 2 non-academic) from October 2023 through October 2024. This manuscript analyzes a subset of questions from the survey addressing digital health literacy and attitudes towards AI in medicine and breast imaging specifically. Multivariable analysis compared responses by respondent demographics. A total of 3,532 surveys were collected (response rate: 69.9%, 3,532/5053). Median respondent age was 55 years (IQR 20). Most respondents were White (73.0%, 2579/3532) and had completed college (77.3%, 2732/3532). Overall, respondents were undecided (range: 43.2%-50.8%) regarding questions about general perceptions of AI in healthcare. Respondents with higher electronic health literacy, more education, and younger age were significantly more likely to consider it useful to use utilize AI for aiding medical tasks (all p<0.001). In contrast, respondents with lower electronic health literacy and less education were significantly more likely to indicate it was a bad idea for AI to perform medical tasks (p<0.001). Non-White patients were more likely to express concerns that AI will not work as well for some groups compared to others (p<0.05). Overall, favorable opinions of AI use for medical tasks were associated with younger age, more education, and higher electronic health literacy. As AI is increasingly implemented into clinical workflows, it is important to educate patients and provide transparency to build patient understanding and trust.
Page 229 of 2332330 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.