Sort by:
Page 208 of 3623611 results

Developing an innovative lung cancer detection model for accurate diagnosis in AI healthcare systems.

Jian W, Haq AU, Afzal N, Khan S, Alsolai H, Alanazi SM, Zamani AT

pubmed logopapersJul 2 2025
Accurate Lung cancer (LC) identification is a big medical problem in the AI-based healthcare systems. Various deep learning-based methods have been proposed for Lung cancer diagnosis. In this study, we proposed a Deep learning techniques-based integrated model (CNN-GRU) for Lung cancer detection. In the proposed model development Convolutional neural networks (CNNs), and gated recurrent units (GRU) models are integrated to design an intelligent model for lung cancer detection. The CNN model extracts spatial features from lung CT images through convolutional and pooling layers. The extracted features from data are embedded in the GRUs model for the final prediction of LC. The model (CNN-GRU) was validated using LC data using the holdout validation technique. Data augmentation techniques such as rotation, and brightness were used to enlarge the data set size for effective training of the model. The optimization techniques Stochastic Gradient Descent(SGD) and Adaptive Moment Estimation(ADAM) were applied during model training for model training parameters optimization. Additionally, evaluation metrics were used to test the model performance. The experimental results of the model presented that the model achieved 99.77% accuracy as compared to previous models. The (CNN-GRU) model is recommended for accurate LC detection in AI-based healthcare systems due to its improved diagnosis accuracy.

Urethra contours on MRI: multidisciplinary consensus educational atlas and reference standard for artificial intelligence benchmarking

song, y., Nguyen, L., Dornisch, A., Baxter, M. T., Barrett, T., Dale, A., Dess, R. T., Harisinghani, M., Kamran, S. C., Liss, M. A., Margolis, D. J., Weinberg, E. P., Woolen, S. A., Seibert, T. M.

medrxiv logopreprintJul 2 2025
IntroductionThe urethra is a recommended avoidance structure for prostate cancer treatment. However, even subspecialist physicians often struggle to accurately identify the urethra on available imaging. Automated segmentation tools show promise, but a lack of reliable ground truth or appropriate evaluation standards has hindered validation and clinical adoption. This study aims to establish a reference-standard dataset with expert consensus contours, define clinically meaningful evaluation metrics, and assess the performance and generalizability of a deep-learning-based segmentation model. Materials and MethodsA multidisciplinary panel of four experienced subspecialists in prostate MRI generated consensus contours of the male urethra for 71 patients across six imaging centers. Four of those cases were previously used in an international study (PURE-MRI), wherein 62 physicians attempted to contour the prostate and urethra on the patient images. Separately, we developed a deep-learning AI model for urethra segmentation using another 151 cases from one center and evaluated it against the consensus reference standard and compared to human performance using Dice Score, percent urethra Coverage, and Maximum 2D (axial, in-plane) Hausdorff Distance (HD) from the reference standard. ResultsIn the PURE-MRI dataset, the AI model outperformed most physicians, achieving a median Dice of 0.41 (vs. 0.33 for physicians), Coverage of 81% (vs. 36%), and Max 2D HD of 1.8 mm (vs. 1.6 mm). In the larger dataset, performance remained consistent, with a Dice of 0.40, Coverage of 89%, and Max 2D HD of 2.0 mm, indicating strong generalizability across a broader patient population and more varied imaging conditions. ConclusionWe established a multidisciplinary consensus benchmark for segmentation of the urethra. The deep-learning model performs comparably to specialist physicians and demonstrates consistent results across multiple institutions. It shows promise as a clinical decision-support tool for accurate and reliable urethra segmentation in prostate cancer radiotherapy planning and studies of dose-toxicity associations.

Classification based deep learning models for lung cancer and disease using medical images

Ahmad Chaddad, Jihao Peng, Yihang Wu

arxiv logopreprintJul 2 2025
The use of deep learning (DL) in medical image analysis has significantly improved the ability to predict lung cancer. In this study, we introduce a novel deep convolutional neural network (CNN) model, named ResNet+, which is based on the established ResNet framework. This model is specifically designed to improve the prediction of lung cancer and diseases using the images. To address the challenge of missing feature information that occurs during the downsampling process in CNNs, we integrate the ResNet-D module, a variant designed to enhance feature extraction capabilities by modifying the downsampling layers, into the traditional ResNet model. Furthermore, a convolutional attention module was incorporated into the bottleneck layers to enhance model generalization by allowing the network to focus on relevant regions of the input images. We evaluated the proposed model using five public datasets, comprising lung cancer (LC2500 $n$=3183, IQ-OTH/NCCD $n$=1336, and LCC $n$=25000 images) and lung disease (ChestXray $n$=5856, and COVIDx-CT $n$=425024 images). To address class imbalance, we used data augmentation techniques to artificially increase the representation of underrepresented classes in the training dataset. The experimental results show that ResNet+ model demonstrated remarkable accuracy/F1, reaching 98.14/98.14\% on the LC25000 dataset and 99.25/99.13\% on the IQ-OTH/NCCD dataset. Furthermore, the ResNet+ model saved computational cost compared to the original ResNet series in predicting lung cancer images. The proposed model outperformed the baseline models on publicly available datasets, achieving better performance metrics. Our codes are publicly available at https://github.com/AIPMLab/Graduation-2024/tree/main/Peng.

BronchoGAN: Anatomically consistent and domain-agnostic image-to-image translation for video bronchoscopy

Ahmad Soliman, Ron Keuth, Marian Himstedt

arxiv logopreprintJul 2 2025
The limited availability of bronchoscopy images makes image synthesis particularly interesting for training deep learning models. Robust image translation across different domains -- virtual bronchoscopy, phantom as well as in-vivo and ex-vivo image data -- is pivotal for clinical applications. This paper proposes BronchoGAN introducing anatomical constraints for image-to-image translation being integrated into a conditional GAN. In particular, we force bronchial orifices to match across input and output images. We further propose to use foundation model-generated depth images as intermediate representation ensuring robustness across a variety of input domains establishing models with substantially less reliance on individual training datasets. Moreover our intermediate depth image representation allows to easily construct paired image data for training. Our experiments showed that input images from different domains (e.g. virtual bronchoscopy, phantoms) can be successfully translated to images mimicking realistic human airway appearance. We demonstrated that anatomical settings (i.e. bronchial orifices) can be robustly preserved with our approach which is shown qualitatively and quantitatively by means of improved FID, SSIM and dice coefficients scores. Our anatomical constraints enabled an improvement in the Dice coefficient of up to 0.43 for synthetic images. Through foundation models for intermediate depth representations, bronchial orifice segmentation integrated as anatomical constraints into conditional GANs we are able to robustly translate images from different bronchoscopy input domains. BronchoGAN allows to incorporate public CT scan data (virtual bronchoscopy) in order to generate large-scale bronchoscopy image datasets with realistic appearance. BronchoGAN enables to bridge the gap of missing public bronchoscopy images.

A novel few-shot learning framework for supervised diffeomorphic image registration network.

Chen K, Han H, Wei J, Zhang Y

pubmed logopapersJul 2 2025
Image registration is a key technique in image processing and analysis. Due to its high complexity, the traditional registration frameworks often fail to meet real-time demands in practice. To address the real-time demand, several deep learning networks for registration have been proposed, including the supervised and the unsupervised networks. Unsupervised networks rely on large amounts of training data to minimize specific loss functions, but the lack of physical information constraints results in the lower accuracy compared with the supervised networks. However, the supervised networks in medical image registration face two major challenges: physical mesh folding and the scarcity of labeled training data. To address these two challenges, we propose a novel few-shot learning framework for image registration. The framework contains two parts: random diffeomorphism generator (RDG) and a supervised few-shot learning network for image registration. By randomly generating a complex vector field, the RDG produces a series of diffeomorphism. With the help of diffeomorphism generated by RDG, one can use only a few image data (theoretically, one image data is enough) to generate a series of labels for training the supervised few-shot learning network. Concerning the elimination of the physical mesh folding phenomenon, in the proposed network, the loss function is only required to ensure the smoothness of deformation (no other control for mesh folding elimination is necessary). The experimental results indicate that the proposed method demonstrates superior performance in eliminating physical mesh folding when compared to other existing learning-based methods. Our code is available at this link https://github.com/weijunping111/RDG-TMI.git.

Multitask Deep Learning Based on Longitudinal CT Images Facilitates Prediction of Lymph Node Metastasis and Survival in Chemotherapy-Treated Gastric Cancer.

Qiu B, Zheng Y, Liu S, Song R, Wu L, Lu C, Yang X, Wang W, Liu Z, Cui Y

pubmed logopapersJul 2 2025
Accurate preoperative assessment of lymph node metastasis (LNM) and overall survival (OS) status is essential for patients with locally advanced gastric cancer receiving neoadjuvant chemotherapy, providing timely guidance for clinical decision-making. However, current approaches to evaluate LNM and OS have limited accuracy. In this study, we used longitudinal CT images from 1,021 patients with locally advanced gastric cancer to develop and validate a multitask deep learning model, named co-attention tri-oriented spatial Mamba (CTSMamba), to simultaneously predict LNM and OS. CTSMamba was trained and validated on 398 patients, and the performance was further validated on 623 patients at two additional centers. Notably, CTSMamba exhibited significantly more robust performance than a clinical model in predicting LNM across all of the cohorts. Additionally, integrating CTSMamba survival scores with clinical predictors further improved personalized OS prediction. These results support the potential of CTSMamba to accurately predict LNM and OS from longitudinal images, potentially providing clinicians with a tool to inform individualized treatment approaches and optimized prognostic strategies. CTSMamba is a multitask deep learning model trained on longitudinal CT images of neoadjuvant chemotherapy-treated locally advanced gastric cancer that accurately predicts lymph node metastasis and overall survival to inform clinical decision-making. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.

SPACE: Subregion Perfusion Analysis for Comprehensive Evaluation of Breast Tumor Using Contrast-Enhanced Ultrasound-A Retrospective and Prospective Multicenter Cohort Study.

Fu Y, Chen J, Chen Y, Lin Z, Ye L, Ye D, Gao F, Zhang C, Huang P

pubmed logopapersJul 2 2025
To develop a dynamic contrast-enhanced ultrasound (CEUS)-based method for segmenting tumor perfusion subregions, quantifying tumor heterogeneity, and constructing models for distinguishing benign from malignant breast tumors. This retrospective-prospective cohort study analyzed CEUS videos of patients with breast tumors from four academic medical centers between September 2015 and October 2024. Pixel-based time-intensity curve (TIC) perfusion variables were extracted, followed by the generation of perfusion heterogeneity maps through cluster analysis. A combined diagnostic model incorporating clinical variables, subregion percentages, and radiomics scores was developed, and subsequently, a nomogram based on this model was constructed for clinical application. A total of 339 participants were included in this bidirectional study. Retrospective data included 233 tumors divided into training and test sets. The prospective data comprised 106 tumors as an independent test set. Subregion analysis revealed Subregion 2 dominated benign tumors, while Subregion 3 was prevalent in malignant tumors. Among 59 machine-learning models, Elastic Net (ENET) (α = 0.7) performed best. Age and subregion radiomics scores were independent risk factors. The combined model achieved area under the curve (AUC) values of 0.93, 0.82, and 0.90 in the training, retrospective, and prospective test sets, respectively. The proposed CEUS-based method enhances visualization and quantification of tumor perfusion dynamics, significantly improving the diagnostic accuracy for breast tumors.

A computationally frugal open-source foundation model for thoracic disease detection in lung cancer screening programs

Niccolò McConnell, Pardeep Vasudev, Daisuke Yamada, Daryl Cheng, Mehran Azimbagirad, John McCabe, Shahab Aslani, Ahmed H. Shahin, Yukun Zhou, The SUMMIT Consortium, Andre Altmann, Yipeng Hu, Paul Taylor, Sam M. Janes, Daniel C. Alexander, Joseph Jacob

arxiv logopreprintJul 2 2025
Low-dose computed tomography (LDCT) imaging employed in lung cancer screening (LCS) programs is increasing in uptake worldwide. LCS programs herald a generational opportunity to simultaneously detect cancer and non-cancer-related early-stage lung disease. Yet these efforts are hampered by a shortage of radiologists to interpret scans at scale. Here, we present TANGERINE, a computationally frugal, open-source vision foundation model for volumetric LDCT analysis. Designed for broad accessibility and rapid adaptation, TANGERINE can be fine-tuned off the shelf for a wide range of disease-specific tasks with limited computational resources and training data. Relative to models trained from scratch, TANGERINE demonstrates fast convergence during fine-tuning, thereby requiring significantly fewer GPU hours, and displays strong label efficiency, achieving comparable or superior performance with a fraction of fine-tuning data. Pretrained using self-supervised learning on over 98,000 thoracic LDCTs, including the UK's largest LCS initiative to date and 27 public datasets, TANGERINE achieves state-of-the-art performance across 14 disease classification tasks, including lung cancer and multiple respiratory diseases, while generalising robustly across diverse clinical centres. By extending a masked autoencoder framework to 3D imaging, TANGERINE offers a scalable solution for LDCT analysis, departing from recent closed, resource-intensive models by combining architectural simplicity, public availability, and modest computational requirements. Its accessible, open-source lightweight design lays the foundation for rapid integration into next-generation medical imaging tools that could transform LCS initiatives, allowing them to pivot from a singular focus on lung cancer detection to comprehensive respiratory disease management in high-risk populations.

Are Vision Transformer Representations Semantically Meaningful? A Case Study in Medical Imaging

Montasir Shams, Chashi Mahiul Islam, Shaeke Salman, Phat Tran, Xiuwen Liu

arxiv logopreprintJul 2 2025
Vision transformers (ViTs) have rapidly gained prominence in medical imaging tasks such as disease classification, segmentation, and detection due to their superior accuracy compared to conventional deep learning models. However, due to their size and complex interactions via the self-attention mechanism, they are not well understood. In particular, it is unclear whether the representations produced by such models are semantically meaningful. In this paper, using a projected gradient-based algorithm, we show that their representations are not semantically meaningful and they are inherently vulnerable to small changes. Images with imperceptible differences can have very different representations; on the other hand, images that should belong to different semantic classes can have nearly identical representations. Such vulnerability can lead to unreliable classification results; for example, unnoticeable changes cause the classification accuracy to be reduced by over 60\%. %. To the best of our knowledge, this is the first work to systematically demonstrate this fundamental lack of semantic meaningfulness in ViT representations for medical image classification, revealing a critical challenge for their deployment in safety-critical systems.
Page 208 of 3623611 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.