Sort by:
Page 206 of 2592588 results

Lung Nodule-SSM: Self-Supervised Lung Nodule Detection and Classification in Thoracic CT Images

Muniba Noreen, Furqan Shaukat

arxiv logopreprintMay 21 2025
Lung cancer remains among the deadliest types of cancer in recent decades, and early lung nodule detection is crucial for improving patient outcomes. The limited availability of annotated medical imaging data remains a bottleneck in developing accurate computer-aided diagnosis (CAD) systems. Self-supervised learning can help leverage large amounts of unlabeled data to develop more robust CAD systems. With the recent advent of transformer-based architecture and their ability to generalize to unseen tasks, there has been an effort within the healthcare community to adapt them to various medical downstream tasks. Thus, we propose a novel "LungNodule-SSM" method, which utilizes selfsupervised learning with DINOv2 as a backbone to enhance lung nodule detection and classification without annotated data. Our methodology has two stages: firstly, the DINOv2 model is pre-trained on unlabeled CT scans to learn robust feature representations, then secondly, these features are fine-tuned using transformer-based architectures for lesionlevel detection and accurate lung nodule diagnosis. The proposed method has been evaluated on the challenging LUNA 16 dataset, consisting of 888 CT scans, and compared with SOTA methods. Our experimental results show the superiority of our proposed method with an accuracy of 98.37%, explaining its effectiveness in lung nodule detection. The source code, datasets, and pre-processed data can be accessed using the link:https://github.com/EMeRALDsNRPU/Lung-Nodule-SSM-Self-Supervised-Lung-Nodule-Detection-and-Classification/tree/main

Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models

Frederic Wang, Jonathan I. Tamir

arxiv logopreprintMay 21 2025
Magnetic Resonance Imaging (MRI) is highly susceptible to motion artifacts due to the extended acquisition times required for k-space sampling. These artifacts can compromise diagnostic utility, particularly for dynamic imaging. We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct non-rigid motion-corrupted k-space data. The diffusion model uses a coarse-to-fine denoising strategy to capture large overall motion and reconstruct the lower frequencies of the image first, providing a better inductive bias for motion estimation than that of standard diffusion models. We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations, even when each motion state is undersampled by a factor of 64x. Additionally, our method is agnostic to sampling patterns, anatomical variations, and MRI scanning protocols, as long as some low frequency components are sampled during each motion state.

An Exploratory Approach Towards Investigating and Explaining Vision Transformer and Transfer Learning for Brain Disease Detection

Shuvashis Sarker, Shamim Rahim Refat, Faika Fairuj Preotee, Shifat Islam, Tashreef Muhammad, Mohammad Ashraful Hoque

arxiv logopreprintMay 21 2025
The brain is a highly complex organ that manages many important tasks, including movement, memory and thinking. Brain-related conditions, like tumors and degenerative disorders, can be hard to diagnose and treat. Magnetic Resonance Imaging (MRI) serves as a key tool for identifying these conditions, offering high-resolution images of brain structures. Despite this, interpreting MRI scans can be complicated. This study tackles this challenge by conducting a comparative analysis of Vision Transformer (ViT) and Transfer Learning (TL) models such as VGG16, VGG19, Resnet50V2, MobilenetV2 for classifying brain diseases using MRI data from Bangladesh based dataset. ViT, known for their ability to capture global relationships in images, are particularly effective for medical imaging tasks. Transfer learning helps to mitigate data constraints by fine-tuning pre-trained models. Furthermore, Explainable AI (XAI) methods such as GradCAM, GradCAM++, LayerCAM, ScoreCAM, and Faster-ScoreCAM are employed to interpret model predictions. The results demonstrate that ViT surpasses transfer learning models, achieving a classification accuracy of 94.39%. The integration of XAI methods enhances model transparency, offering crucial insights to aid medical professionals in diagnosing brain diseases with greater precision.

Comprehensive Lung Disease Detection Using Deep Learning Models and Hybrid Chest X-ray Data with Explainable AI

Shuvashis Sarker, Shamim Rahim Refat, Faika Fairuj Preotee, Tanvir Rouf Shawon, Raihan Tanvir

arxiv logopreprintMay 21 2025
Advanced diagnostic instruments are crucial for the accurate detection and treatment of lung diseases, which affect millions of individuals globally. This study examines the effectiveness of deep learning and transfer learning models using a hybrid dataset, created by merging four individual datasets from Bangladesh and global sources. The hybrid dataset significantly enhances model accuracy and generalizability, particularly in detecting COVID-19, pneumonia, lung opacity, and normal lung conditions from chest X-ray images. A range of models, including CNN, VGG16, VGG19, InceptionV3, Xception, ResNet50V2, InceptionResNetV2, MobileNetV2, and DenseNet121, were applied to both individual and hybrid datasets. The results showed superior performance on the hybrid dataset, with VGG16, Xception, ResNet50V2, and DenseNet121 each achieving an accuracy of 99%. This consistent performance across the hybrid dataset highlights the robustness of these models in handling diverse data while maintaining high accuracy. To understand the models implicit behavior, explainable AI techniques were employed to illuminate their black-box nature. Specifically, LIME was used to enhance the interpretability of model predictions, especially in cases of misclassification, contributing to the development of reliable and interpretable AI-driven solutions for medical imaging.

Benchmarking Chest X-ray Diagnosis Models Across Multinational Datasets

Qinmei Xu, Yiheng Li, Xianghao Zhan, Ahmet Gorkem Er, Brittany Dashevsky, Chuanjun Xu, Mohammed Alawad, Mengya Yang, Liu Ya, Changsheng Zhou, Xiao Li, Haruka Itakura, Olivier Gevaert

arxiv logopreprintMay 21 2025
Foundation models leveraging vision-language pretraining have shown promise in chest X-ray (CXR) interpretation, yet their real-world performance across diverse populations and diagnostic tasks remains insufficiently evaluated. This study benchmarks the diagnostic performance and generalizability of foundation models versus traditional convolutional neural networks (CNNs) on multinational CXR datasets. We evaluated eight CXR diagnostic models - five vision-language foundation models and three CNN-based architectures - across 37 standardized classification tasks using six public datasets from the USA, Spain, India, and Vietnam, and three private datasets from hospitals in China. Performance was assessed using AUROC, AUPRC, and other metrics across both shared and dataset-specific tasks. Foundation models outperformed CNNs in both accuracy and task coverage. MAVL, a model incorporating knowledge-enhanced prompts and structured supervision, achieved the highest performance on public (mean AUROC: 0.82; AUPRC: 0.32) and private (mean AUROC: 0.95; AUPRC: 0.89) datasets, ranking first in 14 of 37 public and 3 of 4 private tasks. All models showed reduced performance on pediatric cases, with average AUROC dropping from 0.88 +/- 0.18 in adults to 0.57 +/- 0.29 in children (p = 0.0202). These findings highlight the value of structured supervision and prompt design in radiologic AI and suggest future directions including geographic expansion and ensemble modeling for clinical deployment. Code for all evaluated models is available at https://drive.google.com/drive/folders/1B99yMQm7bB4h1sVMIBja0RfUu8gLktCE

Domain Adaptive Skin Lesion Classification via Conformal Ensemble of Vision Transformers

Mehran Zoravar, Shadi Alijani, Homayoun Najjaran

arxiv logopreprintMay 21 2025
Exploring the trustworthiness of deep learning models is crucial, especially in critical domains such as medical imaging decision support systems. Conformal prediction has emerged as a rigorous means of providing deep learning models with reliable uncertainty estimates and safety guarantees. However, conformal prediction results face challenges due to the backbone model's struggles in domain-shifted scenarios, such as variations in different sources. To aim this challenge, this paper proposes a novel framework termed Conformal Ensemble of Vision Transformers (CE-ViTs) designed to enhance image classification performance by prioritizing domain adaptation and model robustness, while accounting for uncertainty. The proposed method leverages an ensemble of vision transformer models in the backbone, trained on diverse datasets including HAM10000, Dermofit, and Skin Cancer ISIC datasets. This ensemble learning approach, calibrated through the combined mentioned datasets, aims to enhance domain adaptation through conformal learning. Experimental results underscore that the framework achieves a high coverage rate of 90.38\%, representing an improvement of 9.95\% compared to the HAM10000 model. This indicates a strong likelihood that the prediction set includes the true label compared to singular models. Ensemble learning in CE-ViTs significantly improves conformal prediction performance, increasing the average prediction set size for challenging misclassified samples from 1.86 to 3.075.

Multi-modal Integration Analysis of Alzheimer's Disease Using Large Language Models and Knowledge Graphs

Kanan Kiguchi, Yunhao Tu, Katsuhiro Ajito, Fady Alnajjar, Kazuyuki Murase

arxiv logopreprintMay 21 2025
We propose a novel framework for integrating fragmented multi-modal data in Alzheimer's disease (AD) research using large language models (LLMs) and knowledge graphs. While traditional multimodal analysis requires matched patient IDs across datasets, our approach demonstrates population-level integration of MRI, gene expression, biomarkers, EEG, and clinical indicators from independent cohorts. Statistical analysis identified significant features in each modality, which were connected as nodes in a knowledge graph. LLMs then analyzed the graph to extract potential correlations and generate hypotheses in natural language. This approach revealed several novel relationships, including a potential pathway linking metabolic risk factors to tau protein abnormalities via neuroinflammation (r>0.6, p<0.001), and unexpected correlations between frontal EEG channels and specific gene expression profiles (r=0.42-0.58, p<0.01). Cross-validation with independent datasets confirmed the robustness of major findings, with consistent effect sizes across cohorts (variance <15%). The reproducibility of these findings was further supported by expert review (Cohen's k=0.82) and computational validation. Our framework enables cross modal integration at a conceptual level without requiring patient ID matching, offering new possibilities for understanding AD pathology through fragmented data reuse and generating testable hypotheses for future research.

Adversarial artificial intelligence in radiology: Attacks, defenses, and future considerations.

Dietrich N, Gong B, Patlas MN

pubmed logopapersMay 21 2025
Artificial intelligence (AI) is rapidly transforming radiology, with applications spanning disease detection, lesion segmentation, workflow optimization, and report generation. As these tools become more integrated into clinical practice, new concerns have emerged regarding their vulnerability to adversarial attacks. This review provides an in-depth overview of adversarial AI in radiology, a topic of growing relevance in both research and clinical domains. It begins by outlining the foundational concepts and model characteristics that make machine learning systems particularly susceptible to adversarial manipulation. A structured taxonomy of attack types is presented, including distinctions based on attacker knowledge, goals, timing, and computational frequency. The clinical implications of these attacks are then examined across key radiology tasks, with literature highlighting risks to disease classification, image segmentation and reconstruction, and report generation. Potential downstream consequences such as patient harm, operational disruption, and loss of trust are discussed. Current mitigation strategies are reviewed, spanning input-level defenses, model training modifications, and certified robustness approaches. In parallel, the role of broader lifecycle and safeguard strategies are considered. By consolidating current knowledge across technical and clinical domains, this review helps identify gaps, inform future research priorities, and guide the development of robust, trustworthy AI systems in radiology.

Right Ventricular Strain as a Key Feature in Interpretable Machine Learning for Identification of Takotsubo Syndrome: A Multicenter CMR-based Study.

Du Z, Hu H, Shen C, Mei J, Feng Y, Huang Y, Chen X, Guo X, Hu Z, Jiang L, Su Y, Biekan J, Lyv L, Chong T, Pan C, Liu K, Ji J, Lu C

pubmed logopapersMay 21 2025
To develop an interpretable machine learning (ML) model based on cardiac magnetic resonance (CMR) multimodal parameters and clinical data to discriminate Takotsubo syndrome (TTS), acute myocardial infarction (AMI), and acute myocarditis (AM), and to further assess the diagnostic value of right ventricular (RV) strain in TTS. This study analyzed CMR and clinical data of 130 patients from three centers. Key features were selected using least absolute shrinkage and selection operator regression and random forest. Data were split into a training cohort and an internal testing cohort (ITC) in the ratio 7:3, with overfitting avoided using leave-one-out cross-validation and bootstrap methods. Nine ML models were evaluated using standard performance metrics, with Shapley additive explanations (SHAP) analysis used for model interpretation. A total of 11 key features were identified. The extreme gradient boosting model showed the best performance, with an area under the curve (AUC) value of 0.94 (95% CI: 0.85-0.97) in the ITC. Right ventricular basal circumferential strain (RVCS-basal) was the most important feature for identifying TTS. Its absolute value was significantly higher in TTS patients than in AMI and AM patients (-9.93%, -5.21%, and -6.18%, respectively, p < 0.001), with values above -6.55% contributing to a diagnosis of TTS. This study developed an interpretable ternary classification ML model for identifying TTS and used SHAP analysis to elucidate the significant value of RVCS-basal in TTS diagnosis. An online calculator (https://lsszxyy.shinyapps.io/XGboost/) based on this model was developed to provide immediate decision support for clinical use.

Enhancing nuclei segmentation in breast histopathology images using U-Net with backbone architectures.

C V LP, V G B, Bhooshan RS

pubmed logopapersMay 21 2025
Breast cancer remains a leading cause of mortality among women worldwide, underscoring the need for accurate and timely diagnostic methods. Precise segmentation of nuclei in breast histopathology images is crucial for effective diagnosis and prognosis, offering critical insights into tumor characteristics and informing treatment strategies. This paper presents an enhanced U-Net architecture utilizing ResNet-34 as an advanced backbone, aimed at improving nuclei segmentation performance. The proposed model is evaluated and compared with standard U-Net and its other variants, including U-Net with VGG-16 and Inception-v3 backbones, using the BreCaHad dataset with nuclei masks generated through ImageJ software. The U-Net model with ResNet-34 backbone achieved superior performance, recording an Intersection over Union (IoU) score of 0.795, significantly outperforming the basic U-Net's IoU score of 0.725. The integration of advanced backbones and data augmentation techniques substantially improved segmentation accuracy, especially on limited medical imaging datasets. Comparative analysis demonstrated that ResNet-34 consistently surpassed other configurations across multiple metrics, including IoU, accuracy, precision, and F1 score. Further validation on the BNS and MoNuSeg-2018 datasets confirmed the robustness of the proposed model. This study highlights the potential of advanced deep learning architectures combined with augmentation methods to address challenges in nuclei segmentation, contributing to the development of more effective clinical diagnostic tools and improved patient care outcomes.
Page 206 of 2592588 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.