Sort by:
Page 205 of 2922917 results

Deep learning based motion correction in ultrasound microvessel imaging approach improves thyroid nodule classification.

Saini M, Larson NB, Fatemi M, Alizad A

pubmed logopapersMay 30 2025
To address inter-frame motion artifacts in ultrasound quantitative high-definition microvasculature imaging (qHDMI), we introduced a novel deep learning-based motion correction technique. This approach enables the derivation of more accurate quantitative biomarkers from motion-corrected HDMI images, improving the classification of thyroid nodules. Inter-frame motion, often caused by carotid artery pulsation near the thyroid, can degrade image quality and compromise biomarker reliability, potentially leading to misdiagnosis. Our proposed technique compensates for these motion-induced artifacts, preserving the fine vascular structures critical for accurate biomarker extraction. In this study, we utilized the motion-corrected images obtained through this framework to derive the quantitative biomarkers and evaluated their effectiveness in thyroid nodule classification. We segregated the dataset according to the amount of motion into low and high motion containing cases based on the inter-frame correlation values and performed the thyroid nodule classification for the high motion containing cases and the full dataset. A comprehensive analysis of the biomarker distributions obtained after using the corresponding motion-corrected images demonstrates the significant differences between benign and malignant nodule biomarker characteristics compared to the original motion-containing images. Specifically, the bifurcation angle values derived from the quantitative high-definition microvasculature imaging (qHDMI) become more consistent with the usual trend after motion correction. The classification results demonstrated that sensitivity remained unchanged for groups with less motion, while improved by 9.2% for groups with high motion. These findings highlight that motion correction helps in deriving more accurate biomarkers, which improves the overall classification performance.

Machine Learning Models of Voxel-Level [<sup>18</sup>F] Fluorodeoxyglucose Positron Emission Tomography Data Excel at Predicting Progressive Supranuclear Palsy Pathology.

Braun AS, Satoh R, Pham NTT, Singh-Reilly N, Ali F, Dickson DW, Lowe VJ, Whitwell JL, Josephs KA

pubmed logopapersMay 30 2025
To determine whether a machine learning model of voxel level [<sup>18</sup>f]fluorodeoxyglucose positron emission tomography (PET) data could predict progressive supranuclear palsy (PSP) pathology, as well as outperform currently available biomarkers. One hundred and thirty-seven autopsied patients with PSP (n = 42) and other neurodegenerative diseases (n = 95) who underwent antemortem [<sup>18</sup>f]fluorodeoxyglucose PET and 3.0 Tesla magnetic resonance imaging (MRI) scans were analyzed. A linear support vector machine was applied to differentiate pathological groups with sensitivity analyses performed to assess the influence of voxel size and region removal. A radial basis function was also prepared to create a secondary model using the most important voxels. The models were optimized on the main dataset (n = 104), and their performance was compared with the magnetic resonance parkinsonism index measured on MRI in the independent test dataset (n = 33). The model had the highest accuracy (0.91) and F-score (0.86) when voxel size was 6mm. In this optimized model, important voxels for differentiating the groups were observed in the thalamus, midbrain, and cerebellar dentate. The secondary models found the combination of thalamus and dentate to have the highest accuracy (0.89) and F-score (0.81). The optimized secondary model showed the highest accuracy (0.91) and F-scores (0.86) in the test dataset and outperformed the magnetic resonance parkinsonism index (0.81 and 0.70, respectively). The results suggest that glucose hypometabolism in the thalamus and cerebellar dentate have the highest potential for predicting PSP pathology. Our optimized machine learning model outperformed the best currently available biomarker to predict PSP pathology. ANN NEUROL 2025.

HVAngleEst: A Dataset for End-to-end Automated Hallux Valgus Angle Measurement from X-Ray Images.

Wang Q, Ji D, Wang J, Liu L, Yang X, Zhang Y, Liang J, Liu P, Zhao H

pubmed logopapersMay 30 2025
Accurate measurement of hallux valgus angle (HVA) and intermetatarsal angle (IMA) is essential for diagnosing hallux valgus and determining appropriate treatment strategies. Traditional manual measurement methods, while standardized, are time-consuming, labor-intensive, and subject to evaluator bias. Recent advancements in deep learning have been applied to hallux valgus angle estimation, but the development of effective algorithms requires large, well-annotated datasets. Existing X-ray datasets are typically limited to cropped foot regions images, and only one dataset containing very few samples is publicly available. To address these challenges, we introduce HVAngleEst, the first large-scale, open-access dataset specifically designed for hallux valgus angle estimation. HVAngleEst comprises 1,382 X-ray images from 1,150 patients and includes comprehensive annotations, such as foot localization, hallux valgus angles, and line segments for each phalanx. This dataset enables fully automated, end-to-end hallux valgus angle estimation, reducing manual labor and eliminating evaluator bias.

Artificial Intelligence for Assessment of Digital Mammography Positioning Reveals Persistent Challenges.

Margolies LR, Spear GG, Payne JI, Iles SE, Abdolell M

pubmed logopapersMay 30 2025
Mammographic breast cancer detection depends on high-quality positioning, which is traditionally assessed and monitored subjectively. This study used artificial intelligence (AI) to evaluate mammography positioning on digital screening mammograms to identify and quantify unmet mammography positioning quality (MPQ). Data were collected within an IRB-approved collaboration. In total, 126 367 digital mammography studies (553 339 images) were processed. Unmet MPQ criteria, including exaggeration, portion cutoff, posterior tissue missing, nipple not in profile, too high on image receptor, inadequate pectoralis length, sagging, and posterior nipple line (PNL) length difference, were evaluated using MPQ AI algorithms. The similarity of unmet MPQ occurrence and rank order was compared for each health system. Altogether, 163 759 and 219 785 unmet MPQ criteria were identified, respectively, at the health systems. The rank order and the probability distribution of the unmet MPQ criteria were not statistically significantly different between health systems (P = .844 and P = .92, respectively). The 3 most-common unmet MPQ criteria were: short PNL length on the craniocaudal (CC) view, inadequate pectoralis muscle, and excessive exaggeration on the CC view. The percentages of unmet positioning criteria out of the total potential unmet positioning criteria at health system 1 and health system 2 were 8.4% (163 759/1 949 922) and 7.3% (219 785/3 030 129), respectively. Artificial intelligence identified a similar distribution of unmet MPQ criteria in 2 health systems' daily work. Knowledge of current commonly unmet MPQ criteria can facilitate the improvement of mammography quality through tailored education strategies.

Deploying a novel deep learning framework for segmentation of specific anatomical structures on cone-beam CT.

Yuce F, Buyuk C, Bilgir E, Çelik Ö, Bayrakdar İŞ

pubmed logopapersMay 30 2025
Cone-beam computed tomography (CBCT) imaging plays a crucial role in dentistry, with automatic prediction of anatomical structures on CBCT images potentially enhancing diagnostic and planning procedures. This study aims to predict anatomical structures automatically on CBCT images using a deep learning algorithm. CBCT images from 70 patients were analyzed. Anatomical structures were annotated using a regional segmentation tool within an annotation software by two dentomaxillofacial radiologists. Each volumetric dataset comprised 405 slices, with relevant anatomical structures marked in each slice. Seventy DICOM images were converted to Nifti format, with seven reserved for testing and the remaining sixty-three used for training. The training utilized nnUNetv2 with an initial learning rate of 0.01, decreasing by 0.00001 at each epoch, and was conducted for 1000 epochs. Statistical analysis included accuracy, Dice score, precision, and recall results. The segmentation model achieved an accuracy of 0.99 for nasal fossa, maxillary sinus, nasopalatine canal, mandibular canal, foramen mentale, and foramen mandible, with corresponding Dice scores of 0.85, 0.98, 0.79, 0.73, 0.78, and 0.74, respectively. Precision values ranged from 0.73 to 0.98. Maxillary sinus segmentation exhibited the highest performance, while mandibular canal segmentation showed the lowest performance. The results demonstrate high accuracy and precision across most structures, with varying Dice scores indicating the consistency of segmentation. Overall, our segmentation model exhibits robust performance in delineating anatomical features in CBCT images, promising potential applications in dental diagnostics and treatment planning.

Assessing the value of artificial intelligence-based image analysis for pre-operative surgical planning of neck dissections and iENE detection in head and neck cancer patients.

Schmidl B, Hoch CC, Walter R, Wirth M, Wollenberg B, Hussain T

pubmed logopapersMay 30 2025
Accurate preoperative detection and analysis of lymph node metastasis (LNM) in head and neck squamous cell carcinoma (HNSCC) is essential for the surgical planning and execution of a neck dissection and may directly affect the morbidity and prognosis of patients. Additionally, predicting extranodal extension (ENE) using pre-operative imaging could be particularly valuable in oropharyngeal HPV-positive squamous cell carcinoma, enabling more accurate patient counseling, allowing the decision to favor primary chemoradiotherapy over immediate neck dissection when appropriate. Currently, radiological images are evaluated by radiologists and head and neck oncologists; and automated image interpretation is not part of the current standard of care. Therefore, the value of preoperative image recognition by artificial intelligence (AI) with the large language model (LLM) ChatGPT-4 V was evaluated in this exploratory study based on neck computed tomography (CT) images of HNSCC patients with cervical LNM, and corresponding images without LNM. The objective of this study was to firstly assess the preoperative rater accuracy by comparing clinician assessments of imaging-detected extranodal extension (iENE) and the extent of neck dissection to AI predictions, and secondly to evaluate the pathology-based accuracy by comparing AI predictions to final histopathological outcomes. 45 preoperative CT scans were retrospectively analyzed in this study: 15 cases in which a selective neck dissection (sND) was performed, 15 cases with ensuing radical neck dissection (mrND), and 15 cases without LNM (sND). Of note, image analysis was based on three single images provided to both ChatGPT-4 V and the head and neck surgeons as reviewers. Final pathological characteristics were available in all cases as HNSCC patients had undergone surgery. ChatGPT-4 V was tasked with providing the extent of LNM in the preoperative CT scans and with providing a recommendation for the extent of neck dissection and the detection of iENE. The diagnostic performance of ChatGPT-4 V was reviewed independently by two head and neck surgeons with its accuracy, sensitivity, and specificity being assessed. In this study, ChatGPT-4 V reached a sensitivity of 100% and a specificity of 34.09% in identifying the need for a radical neck dissection based on neck CT images. The sensitivity and specificity of detecting iENE was 100% and 34.15%, respectively. Both human reviewers achieved higher specificity. Notably, ChatGPT-4 V also recommended a mrND and detected iENE on CT images without any cervical LNM. In this exploratory study of 45 preoperative CT Neck scans before a neck dissection, ChatGPT-4 V substantially overestimated the degree and severity of lymph node metastasis in head and neck cancer. While these results suggest that ChatGPT-4 V may not yet be a tool providing added value for surgical planning in head and neck cancer, the unparalleled speed of analysis and well-founded reasoning provided suggests that AI tools may provide added value in the future.

Deep learning without borders: recent advances in ultrasound image classification for liver diseases diagnosis.

Yousefzamani M, Babapour Mofrad F

pubmed logopapersMay 30 2025
Liver diseases are among the top global health burdens. Recently, there has been an increasing significance of diagnostics without discomfort to the patient; among them, ultrasound is the most used. Deep learning, in particular convolutional neural networks, has revolutionized the classification of liver diseases by automatically performing some specific analyses of difficult images. This review summarizes the progress that has been made in deep learning techniques for the classification of liver diseases using ultrasound imaging. It evaluates various models from CNNs to their hybrid versions, such as CNN-Transformer, for detecting fatty liver, fibrosis, and liver cancer, among others. Several challenges in the generalization of data and models across a different clinical environment are also discussed. Deep learning has great prospects for automatic diagnosis of liver diseases. Most of the models have performed with high accuracy in different clinical studies. Despite this promise, challenges relating to generalization have remained. Future hardware developments and access to quality clinical data continue to further improve the performance of these models and ensure their vital role in the diagnosis of liver diseases.

Bias in Artificial Intelligence: Impact on Breast Imaging.

Net JM, Collado-Mesa F

pubmed logopapersMay 30 2025
Artificial intelligence (AI) in breast imaging has garnered significant attention given the numerous reports of improved efficiency, accuracy, and the potential to bridge the gap of expanded volume in the face of limited physician resources. While AI models are developed with specific data points, on specific equipment, and in specific populations, the real-world clinical environment is dynamic, and patient populations are diverse, which can impact generalizability and widespread adoption of AI in clinical practice. Implementation of AI models into clinical practice requires focused attention on the potential of AI bias impacting outcomes. The following review presents the concept, sources, and types of AI bias to be considered when implementing AI models and offers suggestions on strategies to mitigate AI bias in practice.

Phantom-Based Ultrasound-ECG Deep Learning Framework for Prospective Cardiac Computed Tomography.

Ganesh S, Lindsey BD, Tridandapani S, Bhatti PT

pubmed logopapersMay 30 2025
We present the first multimodal deep learning framework combining ultrasound (US) and electrocardiography (ECG) data to predict cardiac quiescent periods (QPs) for optimized computed tomography angiography gating (CTA). The framework integrates a 3D convolutional neural network (CNN) for US data and an artificial neural network (ANN) for ECG data. A dynamic heart motion phantom, replicating diverse cardiac conditions, including arrhythmias, was used to validate the framework. Performance was assessed across varying QP lengths, cardiac segments, and motions to simulate real-world conditions. The multimodal US-ECG 3D CNN-ANN framework demonstrated improved QP prediction accuracy compared to single-modality ECG-only gating, achieving 96.87% accuracy compared to 85.56%, including scenarios involving arrhythmic conditions. Notably, the framework shows higher accuracy for longer QP durations (100 ms - 200 ms) compared to shorter durations (<100ms), while still outperforming single-modality methods, which often fail to detect shorter quiescent phases, especially in arrhythmic cases. Consistently outperforming single-modality approaches, it achieves reliable QP prediction across cardiac regions, including the whole phantom, interventricular septum, and cardiac wall regions. Analysis of QP prediction accuracy across cardiac segments demonstrated an average accuracy of 92% in clinically relevant echocardiographic views, highlighting the framework's robustness. Combining US and ECG data using a multimodal framework improves QP prediction accuracy under variable cardiac motion, particularly in arrhythmic conditions. Since even small errors in cardiac CTA can result in non-diagnostic scans, the potential benefits of multimodal gating may improve diagnostic scan rates in patients with high and variable heart rates and arrhythmias.

End-to-end 2D/3D registration from pre-operative MRI to intra-operative fluoroscopy for orthopedic procedures.

Ku PC, Liu M, Grupp R, Harris A, Oni JK, Mears SC, Martin-Gomez A, Armand M

pubmed logopapersMay 30 2025
Soft tissue pathologies and bone defects are not easily visible in intra-operative fluoroscopic images; therefore, we develop an end-to-end MRI-to-fluoroscopic image registration framework, aiming to enhance intra-operative visualization for surgeons during orthopedic procedures. The proposed framework utilizes deep learning to segment MRI scans and generate synthetic CT (sCT) volumes. These sCT volumes are then used to produce digitally reconstructed radiographs (DRRs), enabling 2D/3D registration with intra-operative fluoroscopic images. The framework's performance was validated through simulation and cadaver studies for core decompression (CD) surgery, focusing on the registration accuracy of femur and pelvic regions. The framework achieved a mean translational registration accuracy of 2.4 ± 1.0 mm and rotational accuracy of 1.6 ± <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0</mn> <mo>.</mo> <msup><mn>8</mn> <mo>∘</mo></msup> </mrow> </math> for the femoral region in cadaver studies. The method successfully enabled intra-operative visualization of necrotic lesions that were not visible on conventional fluoroscopic images, marking a significant advancement in image guidance for femur and pelvic surgeries. The MRI-to-fluoroscopic registration framework offers a novel approach to image guidance in orthopedic surgeries, exclusively using MRI without the need for CT scans. This approach enhances the visualization of soft tissues and bone defects, reduces radiation exposure, and provides a safer, more effective alternative for intra-operative surgical guidance.
Page 205 of 2922917 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.