Sort by:
Page 20 of 42417 results

Implicit neural representation for medical image reconstruction.

Zhu Y, Liu Y, Zhang Y, Liang D

pubmed logopapersJun 2 2025
Medical image reconstruction aims to generate high-quality images from sparsely sampled raw sensor data, which poses an ill-posed inverse problem. Traditional iterative reconstruction methods rely on prior information to empirically construct regularization terms, a process that is not trivial. While deep learning (DL)-based supervised reconstruction has made significant progress in improving image quality, it requires large-scale training data, which is difficult to obtain in medical imaging. Recently, implicit neural representation (INR) has emerged as a promising approach, offering a flexible and continuous representation of images by modeling the underlying signal as a function of spatial coordinates. This allows INR to capture fine details and complex structures more effectively than conventional discrete methods. This paper provides a comprehensive review of INR-based medical image reconstruction techniques, highlighting its growing impact on the field. The benefits of INR in both image and measurement domains are presented, and its advantages, limitations, and future research directions are discussed.&#xD.

Current AI technologies in cancer diagnostics and treatment.

Tiwari A, Mishra S, Kuo TR

pubmed logopapersJun 2 2025
Cancer continues to be a significant international health issue, which demands the invention of new methods for early detection, precise diagnoses, and personalized treatments. Artificial intelligence (AI) has rapidly become a groundbreaking component in the modern era of oncology, offering sophisticated tools across the range of cancer care. In this review, we performed a systematic survey of the current status of AI technologies used for cancer diagnoses and therapeutic approaches. We discuss AI-facilitated imaging diagnostics using a range of modalities such as computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and digital pathology, highlighting the growing role of deep learning in detecting early-stage cancers. We also explore applications of AI in genomics and biomarker discovery, liquid biopsies, and non-invasive diagnoses. In therapeutic interventions, AI-based clinical decision support systems, individualized treatment planning, and AI-facilitated drug discovery are transforming precision cancer therapies. The review also evaluates the effects of AI on radiation therapy, robotic surgery, and patient management, including survival predictions, remote monitoring, and AI-facilitated clinical trials. Finally, we discuss important challenges such as data privacy, interpretability, and regulatory issues, and recommend future directions that involve the use of federated learning, synthetic biology, and quantum-boosted AI. This review highlights the groundbreaking potential of AI to revolutionize cancer care by making diagnostics, treatments, and patient management more precise, efficient, and personalized.

Fine-tuned large Language model for extracting newly identified acute brain infarcts based on computed tomography or magnetic resonance imaging reports.

Fujita N, Yasaka K, Kiryu S, Abe O

pubmed logopapersJun 2 2025
This study aimed to develop an automated early warning system using a large language model (LLM) to identify acute to subacute brain infarction from free-text computed tomography (CT) or magnetic resonance imaging (MRI) radiology reports. In this retrospective study, 5,573, 1,883, and 834 patients were included in the training (mean age, 67.5 ± 17.2 years; 2,831 males), validation (mean age, 61.5 ± 18.3 years; 994 males), and test (mean age, 66.5 ± 16.1 years; 488 males) datasets. An LLM (Japanese Bidirectional Encoder Representations from Transformers model) was fine-tuned to classify the CT and MRI reports into three groups (group 0, newly identified acute to subacute infarction; group 1, known acute to subacute infarction or old infarction; group 2, without infarction). The training and validation processes were repeated 15 times, and the best-performing model on the validation dataset was selected to further evaluate its performance on the test dataset. The best fine-tuned model exhibited sensitivities of 0.891, 0.905, and 0.959 for groups 0, 1, and 2, respectively, in the test dataset. The macrosensitivity (the average of sensitivity for all groups) and accuracy were 0.918 and 0.923, respectively. The model's performance in extracting newly identified acute brain infarcts was high, with an area under the receiver operating characteristic curve of 0.979 (95% confidence interval, 0.956-1.000). The average prediction time was 0.115 ± 0.037 s per patient. A fine-tuned LLM could extract newly identified acute to subacute brain infarcts based on CT or MRI findings with high performance.

SASWISE-UE: Segmentation and synthesis with interpretable scalable ensembles for uncertainty estimation.

Chen W, McMillan AB

pubmed logopapersJun 2 2025
This paper introduces an efficient sub-model ensemble framework aimed at enhancing the interpretability of medical deep learning models, thus increasing their clinical applicability. By generating uncertainty maps, this framework enables end-users to evaluate the reliability of model outputs. We developed a strategy to generate diverse models from a single well-trained checkpoint, facilitating the training of a model family. This involves producing multiple outputs from a single input, fusing them into a final output, and estimating uncertainty based on output disagreements. Implemented using U-Net and UNETR models for segmentation and synthesis tasks, this approach was tested on CT body segmentation and MR-CT synthesis datasets. It achieved a mean Dice coefficient of 0.814 in segmentation and a Mean Absolute Error of 88.17 HU in synthesis, improved from 89.43 HU by pruning. Additionally, the framework was evaluated under image corruption and data undersampling, maintaining correlation between uncertainty and error, which highlights its robustness. These results suggest that the proposed approach not only maintains the performance of well-trained models but also enhances interpretability through effective uncertainty estimation, applicable to both convolutional and transformer models in a range of imaging tasks.

Impact of Optic Nerve Tortuosity, Globe Proptosis, and Size on Retinal Ganglion Cell Thickness Across General, Glaucoma, and Myopic Populations.

Chiang CYN, Wang X, Gardiner SK, Buist M, Girard MJA

pubmed logopapersJun 2 2025
The purpose of this study was to investigate the impact of optic nerve tortuosity (ONT), and the interaction of globe proptosis and size on retinal ganglion cell (RGC) thickness, using retinal nerve fiber layer (RNFL) thickness, across general, glaucoma, and myopic populations. This study analyzed 17,940 eyes from the UKBiobank cohort (ID 76442), including 72 glaucomatous and 2475 myopic eyes. Artificial intelligence models were developed to derive RNFL thickness corrected for ocular magnification from 3D optical coherence tomography scans and orbit features from 3D magnetic resonance images, including ONT, globe proptosis, axial length, and a novel feature: the interzygomatic line-to-posterior pole (ILPP) distance - a composite marker of globe proptosis and size. Generalized estimating equation (GEE) models evaluated associations between orbital and retinal features. RNFL thickness was positively correlated with ONT and ILPP distance (r = 0.065, P < 0.001 and r = 0.206, P < 0.001, respectively) in the general population. The same was true for glaucoma (r = 0.040, P = 0.74 and r = 0.224, P = 0.059), and for myopia (r = 0.069, P < 0.001 and r = 0.100, P < 0.001). GEE models revealed that straighter optic nerves and shorter ILPP distance were predictive of thinner RNFL in all populations. Straighter optic nerves and decreased ILPP distance could cause RNFL thinning, possibly due to greater traction forces. ILPP distance emerged as a potential biomarker of axonal health. These findings underscore the importance of orbit structures in RGC axonal health and warrant further research into orbit biomechanics.

Data Augmentation for Medical Image Classification Based on Gaussian Laplacian Pyramid Blending With a Similarity Measure.

Kumar A, Sharma A, Singh AK, Singh SK, Saxena S

pubmed logopapersJun 1 2025
Breast cancer is a devastating disease that affects women worldwide, and computer-aided algorithms have shown potential in automating cancer diagnosis. Recently Generative Artificial Intelligence (GenAI) opens new possibilities for addressing the challenges of labeled data scarcity and accurate prediction in critical applications. However, a lack of diversity, as well as unrealistic and unreliable data, have a detrimental impact on performance. Therefore, this study proposes an augmentation scheme to address the scarcity of labeled data and data imbalance in medical datasets. This approach integrates the concepts of the Gaussian-Laplacian pyramid and pyramid blending with similarity measures. In order to maintain the structural properties of images and capture inter-variability of patient images of the same category similarity-metric-based intermixing has been introduced. It helps to maintain the overall quality and integrity of the dataset. Subsequently, deep learning approach with significant modification, that leverages transfer learning through the usage of concatenated pre-trained models is applied to classify breast cancer histopathological images. The effectiveness of the proposal, including the impact of data augmentation, is demonstrated through a detailed analysis of three different medical datasets, showing significant performance improvement over baseline models. The proposal has the potential to contribute to the development of more accurate and reliable approach for breast cancer diagnosis.

Information Geometric Approaches for Patient-Specific Test-Time Adaptation of Deep Learning Models for Semantic Segmentation.

Ravishankar H, Paluru N, Sudhakar P, Yalavarthy PK

pubmed logopapersJun 1 2025
The test-time adaptation (TTA) of deep-learning-based semantic segmentation models, specific to individual patient data, was addressed in this study. The existing TTA methods in medical imaging are often unconstrained, require anatomical prior information or additional neural networks built during training phase, making them less practical, and prone to performance deterioration. In this study, a novel framework based on information geometric principles was proposed to achieve generic, off-the-shelf, regularized patient-specific adaptation of models during test-time. By considering the pre-trained model and the adapted models as part of statistical neuromanifolds, test-time adaptation was treated as constrained functional regularization using information geometric measures, leading to improved generalization and patient optimality. The efficacy of the proposed approach was shown on three challenging problems: 1) improving generalization of state-of-the-art models for segmenting COVID-19 anomalies in Computed Tomography (CT) images 2) cross-institutional brain tumor segmentation from magnetic resonance (MR) images, 3) segmentation of retinal layers in Optical Coherence Tomography (OCT) images. Further, it was demonstrated that robust patient-specific adaptation can be achieved without adding significant computational burden, making it first of its kind based on information geometric principles.

Automated Ensemble Multimodal Machine Learning for Healthcare.

Imrie F, Denner S, Brunschwig LS, Maier-Hein K, van der Schaar M

pubmed logopapersJun 1 2025
The application of machine learning in medicine and healthcare has led to the creation of numerous diagnostic and prognostic models. However, despite their success, current approaches generally issue predictions using data from a single modality. This stands in stark contrast with clinician decision-making which employs diverse information from multiple sources. While several multimodal machine learning approaches exist, significant challenges in developing multimodal systems remain that are hindering clinical adoption. In this paper, we introduce a multimodal framework, AutoPrognosis-M, that enables the integration of structured clinical (tabular) data and medical imaging using automated machine learning. AutoPrognosis-M incorporates 17 imaging models, including convolutional neural networks and vision transformers, and three distinct multimodal fusion strategies. In an illustrative application using a multimodal skin lesion dataset, we highlight the importance of multimodal machine learning and the power of combining multiple fusion strategies using ensemble learning. We have open-sourced our framework as a tool for the community and hope it will accelerate the uptake of multimodal machine learning in healthcare and spur further innovation.

<i>Radiology: Cardiothoracic Imaging</i> Highlights 2024.

Catania R, Mukherjee A, Chamberlin JH, Calle F, Philomina P, Mastrodicasa D, Allen BD, Suchá D, Abbara S, Hanneman K

pubmed logopapersJun 1 2025
<i>Radiology: Cardiothoracic Imaging</i> publishes research, technical developments, and reviews related to cardiac, vascular, and thoracic imaging. The current review article, led by the <i>Radiology: Cardiothoracic Imaging</i> trainee editorial board, highlights the most impactful articles published in the journal between November 2023 and October 2024. The review encompasses various aspects of cardiac, vascular, and thoracic imaging related to coronary artery disease, cardiac MRI, valvular imaging, congenital and inherited heart diseases, thoracic imaging, lung cancer, artificial intelligence, and health services research. Key highlights include the role of CT fractional flow reserve analysis to guide patient management, the role of MRI elastography in identifying age-related myocardial stiffness associated with increased risk of heart failure, review of MRI in patients with cardiovascular implantable electronic devices and fractured or abandoned leads, imaging of mitral annular disjunction, specificity of the Lung Imaging Reporting and Data System version 2022 for detecting malignant airway nodules, and a radiomics-based reinforcement learning model to analyze serial low-dose CT scans in lung cancer screening. Ongoing research and future directions include artificial intelligence tools for applications such as plaque quantification using coronary CT angiography and growing understanding of the interconnectedness of environmental sustainability and cardiovascular imaging. <b>Keywords:</b> CT, MRI, CT-Coronary Angiography, Cardiac, Pulmonary, Coronary Arteries, Heart, Lung, Mediastinum, Mitral Valve, Aortic Valve, Artificial Intelligence © RSNA, 2025.

Multi-Objective Evolutionary Optimization Boosted Deep Neural Networks for Few-Shot Medical Segmentation With Noisy Labels.

Li H, Zhang Y, Zuo Q

pubmed logopapersJun 1 2025
Fully-supervised deep neural networks have achieved remarkable progress in medical image segmentation, yet they heavily rely on extensive manually labeled data and exhibit inflexibility for unseen tasks. Few-shot segmentation (FSS) addresses these issues by predicting unseen classes from a few labeled support examples. However, most existing FSS models struggle to generalize to diverse target tasks distinct from training domains. Furthermore, designing promising network architectures for such tasks is expertise-intensive and laborious. In this paper, we introduce MOE-FewSeg, a novel automatic design method for FSS architectures. Specifically, we construct a U-shaped encoder-decoder search space that incorporates capabilities for information interaction and feature selection, thereby enabling architectures to leverage prior knowledge from publicly available datasets across diverse domains for improved prediction of various target tasks. Given the potential conflicts among disparate target tasks, we formulate the multi-task problem as a multi-objective optimization problem. We employ a multi-objective genetic algorithm to identify the Pareto-optimal architectures for these target tasks within this search space. Furthermore, to mitigate the impact of noisy labels due to dataset quality variations, we propose a noise-robust loss function named NRL, which encourages the model to de-emphasize larger loss values. Empirical results demonstrate that MOE-FewSeg outperforms manually designed architectures and other related approaches.
Page 20 of 42417 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.