Multi-Objective Evolutionary Optimization Boosted Deep Neural Networks for Few-Shot Medical Segmentation With Noisy Labels.
Authors
Abstract
Fully-supervised deep neural networks have achieved remarkable progress in medical image segmentation, yet they heavily rely on extensive manually labeled data and exhibit inflexibility for unseen tasks. Few-shot segmentation (FSS) addresses these issues by predicting unseen classes from a few labeled support examples. However, most existing FSS models struggle to generalize to diverse target tasks distinct from training domains. Furthermore, designing promising network architectures for such tasks is expertise-intensive and laborious. In this paper, we introduce MOE-FewSeg, a novel automatic design method for FSS architectures. Specifically, we construct a U-shaped encoder-decoder search space that incorporates capabilities for information interaction and feature selection, thereby enabling architectures to leverage prior knowledge from publicly available datasets across diverse domains for improved prediction of various target tasks. Given the potential conflicts among disparate target tasks, we formulate the multi-task problem as a multi-objective optimization problem. We employ a multi-objective genetic algorithm to identify the Pareto-optimal architectures for these target tasks within this search space. Furthermore, to mitigate the impact of noisy labels due to dataset quality variations, we propose a noise-robust loss function named NRL, which encourages the model to de-emphasize larger loss values. Empirical results demonstrate that MOE-FewSeg outperforms manually designed architectures and other related approaches.