Sort by:
Page 2 of 40400 results

PADReg: Physics-Aware Deformable Registration Guided by Contact Force for Ultrasound Sequences

Yimeng Geng, Mingyang Zhao, Fan Xu, Guanglin Cao, Gaofeng Meng, Hongbin Liu

arxiv logopreprintAug 12 2025
Ultrasound deformable registration estimates spatial transformations between pairs of deformed ultrasound images, which is crucial for capturing biomechanical properties and enhancing diagnostic accuracy in diseases such as thyroid nodules and breast cancer. However, ultrasound deformable registration remains highly challenging, especially under large deformation. The inherently low contrast, heavy noise and ambiguous tissue boundaries in ultrasound images severely hinder reliable feature extraction and correspondence matching. Existing methods often suffer from poor anatomical alignment and lack physical interpretability. To address the problem, we propose PADReg, a physics-aware deformable registration framework guided by contact force. PADReg leverages synchronized contact force measured by robotic ultrasound systems as a physical prior to constrain the registration. Specifically, instead of directly predicting deformation fields, we first construct a pixel-wise stiffness map utilizing the multi-modal information from contact force and ultrasound images. The stiffness map is then combined with force data to estimate a dense deformation field, through a lightweight physics-aware module inspired by Hooke's law. This design enables PADReg to achieve physically plausible registration with better anatomical alignment than previous methods relying solely on image similarity. Experiments on in-vivo datasets demonstrate that it attains a HD95 of 12.90, which is 21.34\% better than state-of-the-art methods. The source code is available at https://github.com/evelynskip/PADReg.

Switchable Deep Beamformer for High-quality and Real-time Passive Acoustic Mapping.

Zeng Y, Li J, Zhu H, Lu S, Li J, Cai X

pubmed logopapersAug 12 2025
Passive acoustic mapping (PAM) is a promising tool for monitoring acoustic cavitation activities in the applications of ultrasound therapy. Data-adaptive beamformers for PAM have better image quality compared with time exposure acoustics (TEA) algorithms. However, the computational cost of data-adaptive beamformers is considerably expensive. In this work, we develop a deep beamformer based on a generative adversarial network that can switch between different transducer arrays and reconstruct high-quality PAM images directly from radiofrequency ultrasound signals with low computational cost. The deep beamformer was trained on a dataset consisting of simulated and experimental cavitation signals of single and multiple microbubble clouds measured by different (linear and phased) arrays covering 1-15 MHz. We compared the performance of the deep beamformer to TEA and three different data-adaptive beamformers using simulated and experimental test dataset. Compared with TEA, the deep beamformer reduced the energy spread area by 27.3%-77.8% and improved the image signal-to-noise ratio by 13.9-25.1 dB on average for the different arrays in our data. Compared with the data-adaptive beamformers, the deep beamformer reduced the computational cost by three orders of magnitude achieving 10.5 ms image reconstruction speed in our data, while the image quality was as good as that of the data-adaptive beamformers. These results demonstrate the potential of the deep beamformer for high-resolution monitoring of microbubble cavitation activities for ultrasound therapy.

Spatial Prior-Guided Dual-Path Network for Thyroid Nodule Segmentation.

Pang C, Miao H, Zhang R, Liu Q, Lyu L

pubmed logopapersAug 12 2025
Accurate segmentation of thyroid nodules in ultrasound images is critical for clinical diagnosis but remains challenging due to low contrast and complex anatomical structures. Existing deep learning methods often rely solely on local nodule features, lacking anatomical prior knowledge of the thyroid region, which can result in misclassification of non-thyroid tissues, especially in low-quality scans. To address these issues, we propose a Spatial Prior-Guided Dual-Path Network that integrates a prior-aware encoder to model thyroid anatomical structures and a low-cost heterogeneous encoder to preserve fine-grained multi-scale features, enhancing both spatial detail and contextual awareness. To capture the diverse and irregular appearances of nodules, we design a CrossBlock module, which combines an efficient cross-attention mechanism with mixed-scale convolutional operations to enable global context modeling and local feature extraction. The network further employs a dual-decoder architecture, where one decoder learns thyroid region priors and the other focuses on accurate nodule segmentation. Gland-specific features are hierarchically refined and injected into the nodule decoder to enhance boundary delineation through anatomical guidance. Extensive experiments on the TN3K and MTNS datasets demonstrate that our method consistently outperforms state-of-the-art approaches, particularly in boundary precision and localization accuracy, offering practical value for preoperative planning and clinical decision-making.

Diagnostic performance of ultrasound S-Detect technology in evaluating BI-RADS-4 breast nodules ≤ 20 mm and > 20 mm.

Xing B, Gu C, Fu C, Zhang B, Tan Y

pubmed logopapersAug 12 2025
This study aimed to explore the diagnostic performance of ultrasound S-Detect in differentiating Breast Imaging-Reporting and Data System (BI-RADS) 4 breast nodules ≤ 20 mm and > 20 mm. Between November 2020 and November 2022, a total of 382 breast nodules in 312 patients were classified as BI-RADS-4 by conventional ultrasound. Using pathology results as the gold standard, we applied receiver operator characteristics (ROC), sensitivity (SE), specificity (SP), accuracy (ACC), positive predictive value (PPV), and negative predictive value (NPV) to analyze the diagnostic value of BI-RADS, S-Detect, and the two techniques in combination (Co-Detect) in the diagnosis of BI-RADS 4 breast nodules ≤ 20 mm and > 20 mm. There were 382 BI-RADS-4 nodules, of which 151 were pathologically confirmed as malignant, and 231 as benign. In lesions ≤ 20 mm, the SE, SP, ACC, PPV, NPV, and area under the curve (AUC) of the BI-RADS group were 77.27%, 89.73%, 85.71%, 78.16%, 89.24%, 0.835, respectively. SE, SP, ACC, PPV, NPV, and AUC of the S-Detect group were 92.05%, 78.92%, 83.15%, 67.50%, 95.43%, 0.855, respectively. SE, SP, ACC, PPV, NPV, and AUC of the Co-Detect group were 89.77%, 93.51%, 92.31%, 86.81%, 95.05%, 0.916, respectively. The differences of SE, ACC, NPV, and AUC between the BI-RADS group and the Co-Detect group were statistically significant (P < 0.05). In lesions > 20 mm, SE, SP, ACC, PPV, NPV, and AUC of the BI-RADS group were 88.99%, 89.13%, 88.99%, 91.80%, 85.42%, 0.890, respectively. SE, SP, ACC, PPV, NPV, and AUC of the S-Detect group were 98.41%, 69.57%, 86.24%, 81.58%, 96.97%, 0.840, respectively. SE, SP, ACC, PPV, NPV, and AUC of the Co-Detect group were 98.41%, 91.30%, 95.41%, 93.94%, 97.67%, 0.949, respectively. A total of 166 BI-RADS 4 A nodules were downgraded to category 3 by Co-Detect, with 160 (96.4%) confirmed as benign and 6 (all ≤ 20 mm) as false negatives. Conversely, 25 nodules were upgraded to 4B, of which 19 (76.0%) were malignant. The difference in AUC between the BI-RADS group and the Co-Detect group was statistically significant (P < 0.05). S-Detect combined with BI-RADS is effective in the differential diagnosis of BI-RADS 4 breast nodules ≤ 20 mm and > 20 mm. However, its performance is particularly pronounced in lesions ≤ 20 mm, where it contributes to a significant reduction in unnecessary biopsies.

Using Machine Learning to Improve the Contrast-Enhanced Ultrasound Liver Imaging Reporting and Data System Diagnosis of Hepatocellular Carcinoma in Indeterminate Liver Nodules.

Hoopes JR, Lyshchik A, Xiao TS, Berzigotti A, Fetzer DT, Forsberg F, Sidhu PS, Wessner CE, Wilson SR, Keith SW

pubmed logopapersAug 11 2025
Liver cancer ranks among the most lethal cancers. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and better diagnostic tools are needed to diagnose patients at risk. The aim is to develop a machine learning algorithm that enhances the sensitivity and specificity of the Contrast-Enhanced Ultrasound Liver Imaging Reporting and Data System (CEUS-LIRADS) in classifying indeterminate at-risk liver nodules (LR-M, LR-3, LR-4) as HCC or non-HCC. Our study includes patients at risk for HCC with untreated indeterminate focal liver observations detected on US or contrast-enhanced CT or MRI performed as part of their clinical standard of care from January 2018 to November 2022. Recursive partitioning was used to improve HCC diagnosis in indeterminate at-risk nodules. Demographics, blood biomarkers, and CEUS imaging features were evaluated as potential predictors for the algorithm to classify nodules as HCC or non-HCC. We evaluated 244 indeterminate liver nodules from 224 patients (mean age 62.9 y). Of the nodules, 73.2% (164/224) were from males. The algorithm was trained on a random 2/3 partition of 163 liver nodules and correctly reclassified more than half of the HCC liver nodules previously categorized as indeterminate in the independent 1/3 test partition of 81 liver nodules, achieving a sensitivity of 56.3% (95% CI: 42.0%, 70.2%) and specificity of 93.9% (95% CI: 84.4%, 100.0%). Machine learning was applied to the multicenter, multinational study of CEUS LI-RADS indeterminate at-risk liver nodules and correctly diagnosed HCC in more than half of the HCC nodules.

Decoding fetal motion in 4D ultrasound with DeepLabCut.

Inubashiri E, Kaishi Y, Miyake T, Yamaguchi R, Hamaguchi T, Inubashiri M, Ota H, Watanabe Y, Deguchi K, Kuroki K, Maeda N

pubmed logopapersAug 11 2025
This study aimed to objectively and quantitatively analyze fetal motor behavior using DeepLabCut (DLC), a markerless posture estimation tool based on deep learning, applied to four-dimensional ultrasound (4DUS) data collected during the second trimester. We propose a novel clinical method for precise assessment of fetal neurodevelopment. Fifty 4DUS video recordings of normal singleton fetuses aged 12 to 22 gestational weeks were analyzed. Eight fetal joints were manually labeled in 2% of each video to train a customized DLC model. The model's accuracy was evaluated using likelihood scores. Intra- and inter-rater reliability of manual labeling were assessed using intraclass correlation coefficients (ICC). Angular velocity time series derived from joint coordinates were analyzed to quantify fetal movement patterns and developmental coordination. Manual labeling demonstrated excellent reproducibility (inter-rater ICC = 0.990, intra-rater ICC = 0.961). The trained DLC model achieved a mean likelihood score of 0.960, confirming high tracking accuracy. Kinematic analysis revealed developmental trends: localized rapid limb movements were common at 12-13 weeks; movements became more coordinated and systemic by 18-20 weeks, reflecting advancing neuromuscular maturation. Although a modest increase in tracking accuracy was observed with gestational age, this trend did not reach statistical significance (p < 0.001). DLC enables precise quantitative analysis of fetal motor behavior from 4DUS recordings. This AI-driven approach offers a promising, noninvasive alternative to conventional qualitative assessments, providing detailed insights into early fetal neurodevelopmental trajectories and potential early screening for neurodevelopmental disorders.

A Deep Learning-Based Automatic Recognition Model for Polycystic Ovary Ultrasound Images.

Zhao B, Wen L, Huang Y, Fu Y, Zhou S, Liu J, Liu M, Li Y

pubmed logopapersAug 11 2025
Polycystic ovary syndrome (PCOS) has a significant impact on endocrine metabolism, reproductive function, and mental health in women of reproductive age. Ultrasound remains an essential diagnostic tool for PCOS, particularly in individuals presenting with oligomenorrhea or ovulatory dysfunction accompanied by polycystic ovaries, as well as hyperandrogenism associated with polycystic ovaries. However, the accuracy of ultrasound in identifying polycystic ovarian morphology remains variable. To develop a deep learning model capable of rapidly and accurately identifying PCOS using ovarian ultrasound images. Prospective diagnostic accuracy study. This prospective study included data from 1,751 women with suspected PCOS who presented at two affiliated hospitals at Central South University, with clinical and ultrasound information collected and archived. Patients from center 1 were randomly divided into a training set and an internal validation set in a 7:3 ratio, while patients from center 2 served as the external validation set. Using the YOLOv11 deep learning framework, an automated recognition model for ovarian ultrasound images in PCOS cases was constructed, and its diagnostic performance was evaluated. Ultrasound images from 933 patients (781 from center 1 and 152 from center 2) were analyzed. The mean average precision of the YOLOv11 model in detecting the target ovary was 95.7%, 97.6%, and 97.8% for the training, internal validation, and external validation sets, respectively. For diagnostic classification, the model achieved an F1 score of 95.0% in the training set and 96.9% in both validation sets. The area under the curve values were 0.953, 0.973, and 0.967 for the training, internal validation, and external validation sets respectively. The model also demonstrated significantly faster evaluation of a single ovary compared to clinicians (doctor, 5.0 seconds; model, 0.1 seconds; <i>p</i> < 0.01). The YOLOv11-based automatic recognition model for PCOS ovarian ultrasound images exhibits strong target detection and diagnostic performance. This approach can streamline the follicle counting process in conventional ultrasound and enhance the efficiency and generalizability of ultrasound-based PCOS assessment.

Ultrasound-Based Machine Learning and SHapley Additive exPlanations Method Evaluating Risk of Gallbladder Cancer: A Bicentric and Validation Study.

Chen B, Zhong H, Lin J, Lyu G, Su S

pubmed logopapersAug 9 2025
This study aims to construct and evaluate 8 machine learning models by integrating ultrasound imaging features, clinical characteristics, and serological features to assess the risk of gallbladder cancer (GBC) occurrence in patients. A retrospective analysis was conducted on ultrasound and clinical data of 300 suspected GBC patients who visited the Second Affiliated Hospital of Fujian Medical University from January 2020 to January 2024 and 69 patients who visited the Zhongshan Hospital Affiliated to Xiamen University from January 2024 to January 2025. Key relevant features were selected using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Predictive models were constructed using XGBoost, logistic regression, support vector machine, k-nearest neighbors, random forest, decision tree, naive Bayes, and neural network, with the SHapley Additive exPlanations (SHAP) method employed to explain model interpretability. The LASSO regression demonstrated that gender, age, alkaline phosphatase (ALP), clarity of interface with liver, stratification of the gallbladder wall, intracapsular anechoic lesions, and intracapsular punctiform strong lesions were key features for GBC. The XGBoost model demonstrated an area under receiver operating characteristic curve (AUC) of 0.934, 0.916, and 0.813 in the training, validating, and test sets. SHAP analysis revealed the importance ranking of factors as clarity of interface with liver, stratification of the gallbladder wall, intracapsular anechoic lesions, and intracapsular punctiform strong lesions, ALP, gender, and age. Personalized prediction explanations through SHAP values demonstrated the contribution of each feature to the final prediction, enhancing result interpretability. Furthermore, decision plots were generated to display the influence trajectory of each feature on model predictions, aiding in analyzing which features had the greatest impact on these mispredictions; thereby facilitating further model optimization or feature adjustment. This study proposed a GBC ML model based on ultrasound, clinical, and serological characteristics, indicating the superior performance of the XGBoost model and enhancing the interpretability of the model through the SHAP method.

Thyroid Volume Measurement With AI-Assisted Freehand 3D Ultrasound Compared to 2D Ultrasound-A Clinical Trial.

Rask KB, Makouei F, Wessman MHJ, Kristensen TT, Todsen T

pubmed logopapersAug 8 2025
Accurate thyroid volume assessment is critical in thyroid disease diagnostics, yet conventional high-resolution 2D ultrasound has limitations. Freehand 3D ultrasound with AI-assisted segmentation presents a potential advancement, but its clinical accuracy requires validation. This prospective clinical trial included 14 patients scheduled for total thyroidectomy. Preoperative thyroid volume was measured using both 2D ultrasound (ellipsoid method) and freehand 3D ultrasound with AI segmentation. Postoperative thyroid volume, determined via the water displacement method, served as the reference standard. The median postoperative thyroid volume was 14.8 mL (IQR 8.8-20.2). The median volume difference was 1.7 mL (IQR 1.2-3.3) for 3D ultrasound and 3.6 mL (IQR 2.3-6.6) for 2D ultrasound (p = 0.02). The inter-operator reliability coefficient for 3D ultrasound was 0.986 (p < 0.001). These findings suggest that freehand 3D ultrasound with AI-assisted segmentation provides superior accuracy and reproducibility compared to 2D ultrasound and may enhance clinical thyroid volume assessment. ClinicalTrials.gov identifier: NCT05510609.

Automated coronary artery segmentation / tissue characterization and detection of lipid-rich plaque: An integrated backscatter intravascular ultrasound study.

Masuda Y, Takeshita R, Tsujimoto A, Sahashi Y, Watanabe T, Fukuoka D, Hara T, Kanamori H, Okura H

pubmed logopapersAug 8 2025
Intravascular ultrasound (IVUS)-based tissue characterization has been used to detect vulnerable plaque or lipid-rich plaque (LRP). Recently, advancements in artificial intelligence (AI) technology have enabled automated coronary arterial plaque segmentation and tissue characterization. The purpose of this study was to evaluate the feasibility and diagnostic accuracy of a deep learning model for plaque segmentation, tissue characterization and identification of LRP. A total of 1,098 IVUS images from 67 patients who underwent IVUS-guided percutaneous coronary intervention were selected for the training group, while 1,100 IVUS images from 100 vessels (88 patients) were used for the validation group. A 7-layer U-Net ++ was applied for automated coronary artery segmentation and tissue characterization. Segmentation and quantification of the external elastic membrane (EEM), lumen and guidewire artifact were performed and compared with manual measurements. Plaque tissue characterization was conducted using integrated backscatter (IB)-IVUS as the gold standard. LRP was defined as %lipid area of ≥65 %. The deep learning model accurately segmented EEM and lumen. AI-predicted %lipid area (R = 0.90, P < 0.001), % fibrosis area (R = 0.89, P < 0.001), %dense fibrosis area (R = 0.81, P < 0.001) and % calcification area (R = 0.89, P < 0.001), showed strong correlation with IB-IVUS measurements. The model predicted LRP with a sensitivity of 62 %, specificity of 94 %, positive predictive value of 69 %, negative predictive value of 92 % and an area under the receiver operating characteristic curve of 0.919 (95 % CI:0.902-0.934), respectively. The deep-learning model demonstrated accurate automatic segmentation and tissue characterization of human coronary arteries, showing promise for identifying LRP.
Page 2 of 40400 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.