Hybrid Fusion Model for Effective Distinguishing Benign and Malignant Parotid Gland Tumors in Gray-Scale Ultrasonography.
Authors
Affiliations (3)
Affiliations (3)
- Department of Ultrasonography, The First Affiliated Hospital of Nanchang University, Nanchang, China.
- Department of Ultrasonography, The First Affiliated Hospital of Nanchang University, Nanchang, China. Electronic address: [email protected].
- Department of Ultrasonography, The First Affiliated Hospital of Nanchang University, Nanchang, China; Department of Ultrasonography, Ganjiang New District Peoples Hospital, Nanchang, China.
Abstract
To develop a hybrid fusion model-deep learning radiomics nomograms (DLRN), integrating radiomics and transfer learning for assisting sonographers differentiate benign and malignant parotid gland tumors. This study retrospectively analyzed a total of 328 patients with pathologically confirmed parotid gland tumors from two centers. Radiomics features extracted from ultrasound images were input into eight machine learning classifiers to construct Radiomics (Rad) model. Additionally, images were also input into seven transfer learning networks to construct deep transfer learning (DTL) model. The prediction probabilities from these two models were combined through decision fusion to construct a DLR model. Clinical features were further integrated with the prediction probabilities of the DLR model to develop the DLRN model. The performance of these models was evaluated using receiver operating characteristic curve analysis, calibration curve, decision curve analysis and the Hosmer-Lemeshow test. In the internal and external validation cohorts, compared with Clinic (AUC = 0.891 and 0.734), Rad (AUC = 0.809 and 0.860), DTL (AUC = 0.905 and 0.782) and DLR (AUC = 0.932 and 0.828), the DLRN model demonstrated the greatest discriminative ability (AUC = 0.931 and 0.934), showing the best discriminative power. With the assistance of DLR, the diagnostic accuracy of resident, attending and chief physician increased by 6.6%, 6.5% and 1.2%, respectively. The hybrid fusion model DLRN significantly enhances the diagnostic performance for benign and malignant tumors of the parotid gland. It can effectively assist sonographers in making more accurate diagnoses.