End-to-end Spatiotemporal Analysis of Color Doppler Echocardiograms: Application for Rheumatic Heart Disease Detection.
Authors
Abstract
Rheumatic heart disease (RHD) represents a significant global health challenge, disproportionately affecting over 40 million people in low- and middle-income countries. Early detection through color Doppler echocardiography is crucial for treating RHD, but it requires specialized physicians who are often scarce in resource-limited settings. To address this disparity, artificial intelligence (AI)-driven tools for RHD screening can provide scalable, autonomous solutions to improve access to critical healthcare services in underserved regions. This paper introduces RADAR (Rapid AI-Assisted Echocardiography Detection and Analysis of RHD), a novel and generalizable AI approach for end-to-end spatiotemporal analysis of color Doppler echocardiograms, aimed at detecting early RHD in resource-limited settings. RADAR identifies key imaging views and employs convolutional neural networks to analyze diagnostically relevant phases of the cardiac cycle. It also localizes essential anatomical regions and examines blood flow patterns. It then integrates all findings into a cohesive analytical framework. RADAR was trained and validated on 1,022 echocardiogram videos from 511 Ugandan children, acquired using standard portable ultrasound devices. An independent set of 318 cases, acquired using a handheld ultrasound device with diverse imaging characteristics, was also tested. On the validation set, RADAR outperformed existing methods, achieving an average accuracy of 0.92, sensitivity of 0.94, and specificity of 0.90. In independent testing, it maintained high, clinically acceptable performance, with an average accuracy of 0.79, sensitivity of 0.87, and specificity of 0.70. These results highlight RADAR's potential to improve RHD detection and promote health equity for vulnerable children by enhancing timely, accurate diagnoses in underserved regions.