Sort by:
Page 182 of 3593587 results

Breast lesion classification via colorized mammograms and transfer learning in a novel CAD framework.

Hussein AA, Valizadeh M, Amirani MC, Mirbolouk S

pubmed logopapersJul 11 2025
Medical imaging sciences and diagnostic techniques for Breast Cancer (BC) imaging have advanced tremendously, particularly with the use of mammography images; however, radiologists may still misinterpret medical images of the breast, resulting in limitations and flaws in the screening process. As a result, Computer-Aided Design (CAD) systems have become increasingly popular due to their ability to operate independently of human analysis. Current CAD systems use grayscale analysis, which lacks the contrast needed to differentiate benign from malignant lesions. As part of this study, an innovative CAD system is presented that transforms standard grayscale mammography images into RGB colored through a three-path preprocessing framework developed for noise reduction, lesion highlighting, and tumor-centric intensity adjustment using a data-driven transfer function. In contrast to a generic approach, this approach statistically tailors colorization in order to emphasize malignant regions, thus enhancing the ability of both machines and humans to recognize cancerous areas. As a consequence of this conversion, breast tumors with anomalies become more visible, which allows us to extract more accurate features about them. In a subsequent step, Machine Learning (ML) algorithms are employed to classify these tumors as malign or benign cases. A pre-trained model is developed to extract comprehensive features from colored mammography images by employing this approach. A variety of techniques are implemented in the pre-processing section to minimize noise and improve image perception; however, the most challenging methodology is the application of creative techniques to adjust pixels' intensity values in mammography images using a data-driven transfer function derived from tumor intensity histograms. This adjustment serves to draw attention to tumors while reducing the brightness of other areas in the breast image. Measuring criteria such as accuracy, sensitivity, specificity, precision, F1-Score, and Area Under the Curve (AUC) are used to evaluate the efficacy of the employed methodologies. This work employed and tested a variety of pre-training and ML techniques. However, the combination of EfficientNetB0 pre-training with ML Support Vector Machines (SVM) produced optimal results with accuracy, sensitivity, specificity, precision, F1-Score, and AUC, of 99.4%, 98.7%, 99.1%, 99%, 98.8%, and 100%, respectively. It is clear from these results that the developed method does not only advance the state-of-the-art in technical terms, but also provides radiologists with a practical tool to aid in the reduction of diagnostic errors and increase the detection of early breast cancer.

Machine Learning-Assisted Multimodal Early Screening of Lung Cancer Based on a Multiplexed Laser-Induced Graphene Immunosensor.

Cai Y, Ke L, Du A, Dong J, Gai Z, Gao L, Yang X, Han H, Du M, Qiang G, Wang L, Wei B, Fan Y, Wang Y

pubmed logopapersJul 11 2025
Lung cancer remains the leading cause of cancer-related mortality worldwide, largely due to late-stage diagnosis. Early detection is critical for improving patient outcomes, yet current screening methods, such as low-dose computed tomography (CT), often lack the sensitivity and specificity required for early-stage detection. Here, we present a multimodal early screening platform that integrates a multiplexed laser-induced graphene (LIG) immunosensor with machine learning to enhance the accuracy of lung cancer diagnosis. Our platform enables the rapid, cost-effective, and simultaneous detection of four tumor markers─neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), p53, and SOX2─with limits of detection (LOD) as low as 1.62 pg/mL. By combining proteomic data from the immunosensor with deep learning-based CT imaging features and clinical data, we developed a multimodal predictive model that achieves an area under the curve (AUC) of 0.936, significantly outperforming single-modality approaches. This platform offers a transformative solution for early lung cancer screening, particularly in resource-limited settings, and provides potential technical support for precision medicine in oncology.

Explainable artificial intelligence for pneumonia classification: Clinical insights into deformable prototypical part network in pediatric chest x-ray images.

Yazdani E, Neizehbaz A, Karamzade-Ziarati N, Kheradpisheh SR

pubmed logopapersJul 11 2025
Pneumonia detection in chest X-rays (CXR) increasingly relies on AI-driven diagnostic systems. However, their "black-box" nature often lacks transparency, underscoring the need for interpretability to improve patient outcomes. This study presents the first application of the Deformable Prototypical Part Network (D-ProtoPNet), an ante-hoc interpretable deep learning (DL) model, for pneumonia classification in pediatric patients' CXR images. Clinical insights were integrated through expert radiologist evaluation of the model's learned prototypes and activated image patches, ensuring that explanations aligned with medically meaningful features. The model was developed and tested on a retrospective dataset of 5,856 CXR images of pediatric patients, ages 1-5 years. The images were originally acquired at a tertiary academic medical center as part of routine clinical care and were publicly hosted on a Kaggle platform. This dataset comprised anterior-posterior images labeled normal, viral, and bacterial. It was divided into 80 % training and 20 % validation splits, and utilised in a supervised five-fold cross-validation. Performance metrics were compared with the original ProtoPNet, utilising ResNet50 as the base model. An experienced radiologist assessed the clinical relevance of the learned prototypes, patch activations, and model explanations. The D-ProtoPNet achieved an accuracy of 86 %, precision of 86 %, recall of 85 %, and AUC of 93 %, marking a 3 % improvement over the original ProtoPNet. While further optimisation is required before clinical use, the radiologist praised D-ProtoPNet's intuitive explanations, highlighting its interpretability and potential to aid clinical decision-making. Prototypical part learning offers a balance between classification performance and explanation quality, but requires improvements to match the accuracy of black-box models. This study underscores the importance of integrating domain expertise during model evaluation to ensure the interpretability of XAI models is grounded in clinically valid insights.

Performance of Radiomics and Deep Learning Models in Predicting Distant Metastases in Soft Tissue Sarcomas: A Systematic Review and Meta-analysis.

Mirghaderi P, Valizadeh P, Haseli S, Kim HS, Azhideh A, Nyflot MJ, Schaub SK, Chalian M

pubmed logopapersJul 11 2025
Predicting distant metastases in soft tissue sarcomas (STS) is vital for guiding clinical decision-making. Recent advancements in radiomics and deep learning (DL) models have shown promise, but their diagnostic accuracy remains unclear. This meta-analysis aims to assess the performance of radiomics and DL-based models in predicting metastases in STS by analyzing pooled sensitivity and specificity. Following PRISMA guidelines, a thorough search was conducted in PubMed, Web of Science, and Embase. A random-effects model was used to estimate the pooled area under the curve (AUC), sensitivity, and specificity. Subgroup analyses were performed based on imaging modality (MRI, PET, PET/CT), feature extraction method (DL radiomics [DLR] vs. handcrafted radiomics [HCR]), incorporation of clinical features, and dataset used. Heterogeneity by I² statistic, leave-one-out sensitivity analyses, and publication bias by Egger's test assessed model robustness and potential biases. Ninetheen studies involving 1712 patients were included. The pooled AUC for predicting metastasis was 0.88 (95% CI: 0.80-0.92). The pooled AUC values were 88% (95% CI: 77-89%) for MRI-based models, 80% (95% CI: 76-92%) for PET-based models, and 91% (95% CI: 78-93%) for PET/CT-based models, with no significant differences (p = 0.75). DL-based models showed significantly higher sensitivity than HCR models (p < 0.01). Including clinical features did not significantly improve model performance (AUC: 0.90 vs. 0.88, p = 0.99). Significant heterogeneity was noted (I² > 25%), and Egger's test suggested potential publication bias (p < 0.001). Radiomics models showed promising potential for predicting metastases in STSs, with DL approaches outperforming traditional HCR. While integrating this approach into routine clinical practice is still evolving, it can aid physicians in identifying high-risk patients and implementing targeted monitoring strategies to reduce the risk of severe complications associated with metastasis. However, challenges such as heterogeneity, limited external validation, and potential publication bias persist. Future research should concentrate on standardizing imaging protocols and conducting multi-center validation studies to improve the clinical applicability of radiomics predictive models.

Enhanced Detection of Prostate Cancer Lesions on Biparametric MRI Using Artificial Intelligence: A Multicenter, Fully-crossed, Multi-reader Multi-case Trial.

Xing Z, Chen J, Pan L, Huang D, Qiu Y, Sheng C, Zhang Y, Wang Q, Cheng R, Xing W, Ding J

pubmed logopapersJul 11 2025
To assess artificial intelligence (AI)'s added value in detecting prostate cancer lesions on MRI by comparing radiologists' performance with and without AI assistance. A fully-crossed multi-reader multi-case clinical trial was conducted across three institutions with 10 non-expert radiologists. Biparametric MRI cases comprising T2WI, diffusion-weighted images, and apparent diffusion coefficient were retrospectively collected. Three reading modes were evaluated: AI alone, radiologists alone (unaided), and radiologists with AI (aided). Aided and unaided readings were compared using the Dorfman-Berbaum-Metz method. Reference standards were established by senior radiologists based on pathological reports. Performance was quantified via sensitivity, specificity, and area under the alternative free-response receiver operating characteristic curve (AFROC-AUC). Among 407 eligible male patients (69.5±9.3years), aided reading significantly improved lesion-level sensitivity from 67.3% (95% confidence intervals [CI]: 58.8%, 75.8%) to 85.5% (95% CI: 81.3%, 89.7%), with a substantial difference of 18.2% (95% CI: 10.7%, 25.7%, p<0.001). Case-level specificity increased from 75.9% (95% CI: 68.7%, 83.1%) to 79.5% (95% CI: 74.1%, 84.8%), demonstrating non-inferiority (p<0.001). AFROC-AUC was also higher for aided than unaided reading (86.9% vs 76.1%, p<0.001). AI alone achieved robust performance (AFROC-AUC=83.1%, 95%CI: 79.7%, 86.6%), with lesion-level sensitivity of 88.4% (95% CI: 84.0%, 92.0%) and case-level specificity of 77.8% (95% CI: 71.5%, 83.3%). Subgroup analysis revealed improved detection for lesions with smaller size and lower prostate imaging reporting and data system scores. AI-aided reading significantly enhances lesion detection compared to unaided reading, while AI alone also demonstrates high diagnostic accuracy.

Tiny-objective segmentation for spot signs on multi-phase CT angiography via contrastive learning with dynamic-updated positive-negative memory banks.

Zhang J, Horn M, Tanaka K, Bala F, Singh N, Benali F, Ganesh A, Demchuk AM, Menon BK, Qiu W

pubmed logopapersJul 11 2025
Presence of spot sign on CT Angiography (CTA) is associated with hematoma growth in patients with intracerebral hemorrhage. Measuring spot sign volume over time may aid to predict hematoma expansion. Due to the difficulties that imaging characteristics of spot sign are similar with vein and calcification and spot signs are tiny appeared in CTA images to detect, our aim is to develop an automated method to pick up spot signs accurately. We proposed a novel collaborative architecture of network based on a student-teacher model by efficiently exploiting additional negative samples with contrastive learning. In particular, a set of dynamic-updated memory banks is proposed to learn more distinctive features from the extremely imbalanced positive and negative samples. Alongside, a two-steam network with an additional contextual-decoder is designed for learning more contextual information at different scales in a collaborative way. Besides, to better inhibit the false positive detection rate, a region restriction loss function is further designed to confine the spot sign segmentation within the hemorrhage. Quantitative evaluations using dice, volume correlation, sensitivity, specificity, area under the curve show that the proposed method is able to segment and detect spot signs accurately. Our proposed contractive learning framework obtained the best segmentation performance regarding a mean Dice of 0.638 ± 0211, a mean VC of 0.871 and a mean VDP of 0.348 ± 0.237 and detection performance regarding sensitivity of 0.956 with CI(0.895,1.000), specificity of 0.833 with CI(0.766,0.900), and AUC of 0.892 with CI(0.888,0.896), outperforming nnuNet, cascade-nnuNet, nnuNet++, SegRegNet, UNETR and SwinUNETR. This paper proposed a novel segmentation approach that leverages contrastive learning to explore additional negative samples concurrently for the automatic segmentation of spot signs on mCTA images. The experimental results demonstrate the effectiveness of our method and highlight its potential applicability in clinical settings for measuring spot sign volumes.

Ensemble of Weak Spectral Total Variation Learners: a PET-CT Case Study

Anna Rosenberg, John Kennedy, Zohar Keidar, Yehoshua Y. Zeevi, Guy Gilboa

arxiv logopreprintJul 11 2025
Solving computer vision problems through machine learning, one often encounters lack of sufficient training data. To mitigate this we propose the use of ensembles of weak learners based on spectral total-variation (STV) features (Gilboa 2014). The features are related to nonlinear eigenfunctions of the total-variation subgradient and can characterize well textures at various scales. It was shown (Burger et-al 2016) that, in the one-dimensional case, orthogonal features are generated, whereas in two-dimensions the features are empirically lowly correlated. Ensemble learning theory advocates the use of lowly correlated weak learners. We thus propose here to design ensembles using learners based on STV features. To show the effectiveness of this paradigm we examine a hard real-world medical imaging problem: the predictive value of computed tomography (CT) data for high uptake in positron emission tomography (PET) for patients suspected of skeletal metastases. The database consists of 457 scans with 1524 unique pairs of registered CT and PET slices. Our approach is compared to deep-learning methods and to Radiomics features, showing STV learners perform best (AUC=0.87), compared to neural nets (AUC=0.75) and Radiomics (AUC=0.79). We observe that fine STV scales in CT images are especially indicative for the presence of high uptake in PET.

Rapid MRI-Based Synthetic CT Simulations for Precise tFUS Targeting

Hengyu Gao, Shaodong Ding, Ziyang Liu, Jiefu Zhang, Bolun Li, Zhiwu An, Li Wang, Jing Jing, Tao Liu, Yubo Fan, Zhongtao Hu

arxiv logopreprintJul 11 2025
Accurate targeting is critical for the effectiveness of transcranial focused ultrasound (tFUS) neuromodulation. While CT provides accurate skull acoustic properties, its ionizing radiation and poor soft tissue contrast limit clinical applicability. In contrast, MRI offers superior neuroanatomical visualization without radiation exposure but lacks skull property mapping. This study proposes a novel, fully CT free simulation framework that integrates MRI-derived synthetic CT (sCT) with efficient modeling techniques for rapid and precise tFUS targeting. We trained a deep-learning model to generate sCT from T1-weighted MRI and integrated it with both full-wave (k-Wave) and accelerated simulation methods, hybrid angular spectrum (kWASM) and Rayleigh-Sommerfeld ASM (RSASM). Across five skull models, both full-wave and hybrid pipelines using sCT demonstrated sub-millimeter targeting deviation, focal shape consistency (FWHM ~3.3-3.8 mm), and <0.2 normalized pressure error compared to CT-based gold standard. Notably, the kW-ASM and RS-ASM pipelines reduced simulation time from ~3320 s to 187 s and 34 s respectively, achieving ~94% and ~90% time savings. These results confirm that MRI-derived sCT combined with innovative rapid simulation techniques enables fast, accurate, and radiation-free tFUS planning, supporting its feasibility for scalable clinical applications.

RadiomicsRetrieval: A Customizable Framework for Medical Image Retrieval Using Radiomics Features

Inye Na, Nejung Rue, Jiwon Chung, Hyunjin Park

arxiv logopreprintJul 11 2025
Medical image retrieval is a valuable field for supporting clinical decision-making, yet current methods primarily support 2D images and require fully annotated queries, limiting clinical flexibility. To address this, we propose RadiomicsRetrieval, a 3D content-based retrieval framework bridging handcrafted radiomics descriptors with deep learning-based embeddings at the tumor level. Unlike existing 2D approaches, RadiomicsRetrieval fully exploits volumetric data to leverage richer spatial context in medical images. We employ a promptable segmentation model (e.g., SAM) to derive tumor-specific image embeddings, which are aligned with radiomics features extracted from the same tumor via contrastive learning. These representations are further enriched by anatomical positional embedding (APE). As a result, RadiomicsRetrieval enables flexible querying based on shape, location, or partial feature sets. Extensive experiments on both lung CT and brain MRI public datasets demonstrate that radiomics features significantly enhance retrieval specificity, while APE provides global anatomical context essential for location-based searches. Notably, our framework requires only minimal user prompts (e.g., a single point), minimizing segmentation overhead and supporting diverse clinical scenarios. The capability to query using either image embeddings or selected radiomics attributes highlights its adaptability, potentially benefiting diagnosis, treatment planning, and research on large-scale medical imaging repositories. Our code is available at https://github.com/nainye/RadiomicsRetrieval.

Generalizable 7T T1-map Synthesis from 1.5T and 3T T1 MRI with an Efficient Transformer Model

Zach Eidex, Mojtaba Safari, Tonghe Wang, Vanessa Wildman, David S. Yu, Hui Mao, Erik Middlebrooks, Aparna Kesewala, Xiaofeng Yang

arxiv logopreprintJul 11 2025
Purpose: Ultra-high-field 7T MRI offers improved resolution and contrast over standard clinical field strengths (1.5T, 3T). However, 7T scanners are costly, scarce, and introduce additional challenges such as susceptibility artifacts. We propose an efficient transformer-based model (7T-Restormer) to synthesize 7T-quality T1-maps from routine 1.5T or 3T T1-weighted (T1W) images. Methods: Our model was validated on 35 1.5T and 108 3T T1w MRI paired with corresponding 7T T1 maps of patients with confirmed MS. A total of 141 patient cases (32,128 slices) were randomly divided into 105 (25; 80) training cases (19,204 slices), 19 (5; 14) validation cases (3,476 slices), and 17 (5; 14) test cases (3,145 slices) where (X; Y) denotes the patients with 1.5T and 3T T1W scans, respectively. The synthetic 7T T1 maps were compared against the ResViT and ResShift models. Results: The 7T-Restormer model achieved a PSNR of 26.0 +/- 4.6 dB, SSIM of 0.861 +/- 0.072, and NMSE of 0.019 +/- 0.011 for 1.5T inputs, and 25.9 +/- 4.9 dB, and 0.866 +/- 0.077 for 3T inputs, respectively. Using 10.5 M parameters, our model reduced NMSE by 64 % relative to 56.7M parameter ResShift (0.019 vs 0.052, p = <.001 and by 41 % relative to 70.4M parameter ResViT (0.019 vs 0.032, p = <.001) at 1.5T, with similar advantages at 3T (0.021 vs 0.060 and 0.033; p < .001). Training with a mixed 1.5 T + 3 T corpus was superior to single-field strategies. Restricting the model to 1.5T increased the 1.5T NMSE from 0.019 to 0.021 (p = 1.1E-3) while training solely on 3T resulted in lower performance on input 1.5T T1W MRI. Conclusion: We propose a novel method for predicting quantitative 7T MP2RAGE maps from 1.5T and 3T T1W scans with higher quality than existing state-of-the-art methods. Our approach makes the benefits of 7T MRI more accessible to standard clinical workflows.
Page 182 of 3593587 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.