Sort by:
Page 180 of 2352345 results

Prediction Model and Nomogram for Amyloid Positivity Using Clinical and MRI Features in Individuals With Subjective Cognitive Decline.

Li Q, Cui L, Guan Y, Li Y, Xie F, Guo Q

pubmed logopapersJun 1 2025
There is an urgent need for the precise prediction of cerebral amyloidosis using noninvasive and accessible indicators to facilitate the early diagnosis of individuals with the preclinical stage of Alzheimer's disease (AD). Two hundred and four individuals with subjective cognitive decline (SCD) were enrolled in this study. All subjects completed neuropsychological assessments and underwent 18F-florbetapir PET, structural MRI, and functional MRI. A total of 315 features were extracted from the MRI, demographics, and neuropsychological scales and selected using the least absolute shrinkage and selection operator (LASSO). The logistic regression (LR) model, based on machine learning, was trained to classify SCD as either β-amyloid (Aβ) positive or negative. A nomogram was established using a multivariate LR model to predict the risk of Aβ+. The performance of the prediction model and nomogram was assessed with area under the curve (AUC) and calibration. The final model was based on the right rostral anterior cingulate thickness, the grey matter volume of the right inferior temporal, the ReHo of the left posterior cingulate gyrus and right superior temporal gyrus, as well as MoCA-B and AVLT-R. In the training set, the model achieved a good AUC of 0.78 for predicting Aβ+, with an accuracy of 0.72. The validation of the model also yielded a favorable discriminatory ability with an AUC of 0.88 and an accuracy of 0.83. We have established and validated a model based on cognitive, sMRI, and fMRI data that exhibits adequate discrimination. This model has the potential to predict amyloid status in the SCD group and provide a noninvasive, cost-effective way that might facilitate early screening, clinical diagnosis, and drug clinical trials.

Healthcare resource utilization for the management of neonatal head shape deformities: a propensity-matched analysis of AI-assisted and conventional approaches.

Shin J, Caron G, Stoltz P, Martin JE, Hersh DS, Bookland MJ

pubmed logopapersJun 1 2025
Overuse of radiography studies and underuse of conservative therapies for cranial deformities in neonates is a known inefficiency in pediatric craniofacial healthcare. This study sought to establish whether the introduction of artificial intelligence (AI)-generated craniometrics and craniometric interpretations into craniofacial clinical workflow improved resource utilization patterns in the initial evaluation and management of neonatal cranial deformities. A retrospective chart review of pediatric patients referred for head shape concerns between January 2019 and June 2023 was conducted. Patient demographics, final encounter diagnosis, review of an AI analysis, and provider orders were documented. Patients were divided based on whether an AI cranial deformity analysis was documented as reviewed during the index evaluation, then both groups were propensity matched. Rates of index-encounter radiology studies, physical therapy (PT), orthotic therapy, and craniofacial specialist follow-up evaluations were compared using logistic regression and ANOVA analyses. One thousand patient charts were reviewed (663 conventional encounters, 337 AI-assisted encounters). One-to-one propensity matching was performed between these groups. AI models were significantly more likely to be reviewed during telemedicine encounters and advanced practice provider (APP) visits (54.8% telemedicine vs 11.4% in-person, p < 0.0001; 12.3% physician vs 44.4% APP, p < 0.0001). All AI diagnoses of craniosynostosis versus benign deformities were congruent with final diagnoses. AI model review was associated with a significant increase in the use of orthotic therapies for neonatal cranial deformities (31.5% vs 38.6%, p = 0.0132) but not PT or specialist follow-up evaluations. Radiology ordering rates did not correlate with AI-interpreted data review. As neurosurgeons and pediatricians continue to work to limit neonatal radiation exposure and contain healthcare costs, AI-assisted clinical care could be a cheap and easily scalable diagnostic adjunct for reducing reliance on radiography and encouraging adherence to established clinical guidelines. In practice, however, providers appear to default to preexisting diagnostic biases and underweight AI-generated data and interpretations, ultimately negating any potential advantages offered by AI. AI engineers and specialty leadership should prioritize provider education and user interface optimization to improve future adoption of validated AI diagnostic tools.

Prediction of Lymph Node Metastasis in Lung Cancer Using Deep Learning of Endobronchial Ultrasound Images With Size on CT and PET-CT Findings.

Oh JE, Chung HS, Gwon HR, Park EY, Kim HY, Lee GK, Kim TS, Hwangbo B

pubmed logopapersJun 1 2025
Echo features of lymph nodes (LNs) influence target selection during endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). This study evaluates deep learning's diagnostic capabilities on EBUS images for detecting mediastinal LN metastasis in lung cancer, emphasising the added value of integrating a region of interest (ROI), LN size on CT, and PET-CT findings. We analysed 2901 EBUS images from 2055 mediastinal LN stations in 1454 lung cancer patients. ResNet18-based deep learning models were developed to classify images of true positive malignant and true negative benign LNs diagnosed by EBUS-TBNA using different inputs: original images, ROI images, and CT size and PET-CT data. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC) and other diagnostic metrics. The model using only original EBUS images showed the lowest AUROC (0.870) and accuracy (80.7%) in classifying LN images. Adding ROI information slightly increased the AUROC (0.896) without a significant difference (p = 0.110). Further adding CT size resulted in a minimal change in AUROC (0.897), while adding PET-CT (original + ROI + PET-CT) showed a significant improvement (0.912, p = 0.008 vs. original; p = 0.002 vs. original + ROI + CT size). The model combining original and ROI EBUS images with CT size and PET-CT findings achieved the highest AUROC (0.914, p = 0.005 vs. original; p = 0.018 vs. original + ROI + PET-CT) and accuracy (82.3%). Integrating an ROI, LN size on CT, and PET-CT findings into the deep learning analysis of EBUS images significantly enhances the diagnostic capability of models for detecting mediastinal LN metastasis in lung cancer, with the integration of PET-CT data having a substantial impact.

[Applications of artificial intelligence in cardiovascular imaging: advantages, limitations, and future challenges].

Fortuni F, Petrina SM, Nicolosi GL

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is rapidly transforming cardiovascular imaging, offering innovative solutions to enhance diagnostic precision, prognostic accuracy, and therapeutic decision-making. This review explores the role of AI in cardiovascular imaging, highlighting its applications, advantages, limitations, and future challenges. The discussion is structured by imaging modalities, including echocardiography, cardiac and coronary computed tomography, cardiac magnetic resonance, and nuclear cardiology. For each modality, we examine AI's contributions across the patient care continuum: from patient selection and image acquisition to quantitative and qualitative analysis, interpretation support, prognostic stratification, therapeutic guidance, and integration with other clinical data. AI applications demonstrate significant potential to streamline workflows, improve diagnostic accuracy, and provide advanced insights for complex clinical scenarios. However, several limitations must be addressed. Many AI algorithms are developed using data from single, high-expertise centers, raising concerns about their generalizability to routine clinical practice. In some cases, these algorithms may even produce misleading results. Additionally, the "black box" nature of certain AI systems poses challenges for cardiologists, making discrepancies difficult to interpret or rectify. Importantly, AI should be seen as a complementary tool rather than a replacement for cardiologists, designed to expedite routine tasks and allow clinicians to focus on complex cases. Future challenges include fostering clinician involvement in algorithm development and extending AI implementation to peripheral healthcare centers. This approach aims to enhance accessibility, understanding, and applicability of AI in everyday clinical practice, ultimately democratizing its benefits and ensuring equitable integration into healthcare systems.

Predicting lung cancer bone metastasis using CT and pathological imaging with a Swin Transformer model.

Li W, Zou X, Zhang J, Hu M, Chen G, Su S

pubmed logopapersJun 1 2025
Bone metastasis is a common and serious complication in lung cancer patients, leading to severe pain, pathological fractures, and reduced quality of life. Early prediction of bone metastasis can enable timely interventions and improve patient outcomes. In this study, we developed a multimodal Swin Transformer-based deep learning model for predicting bone metastasis risk in lung cancer patients by integrating CT imaging and pathological data. A total of 215 patients with confirmed lung cancer diagnoses, including those with and without bone metastasis, were included. The model was designed to process high-resolution CT images and digitized histopathological images, with the features extracted independently by two Swin Transformer networks. These features were then fused using decision-level fusion techniques to improve classification accuracy. The Swin-Dual Fusion Model achieved superior performance compared to single-modality models and conventional architectures such as ResNet50, with an AUC of 0.966 on the test data and 0.967 on the training data. This integrated model demonstrated high accuracy, sensitivity, and specificity, making it a promising tool for clinical application in predicting bone metastasis risk. The study emphasizes the potential of transformer-based models to revolutionize bone oncology through advanced multimodal analysis and early prediction of metastasis, ultimately improving patient care and treatment outcomes.

Fully automated image quality assessment based on deep learning for carotid computed tomography angiography: A multicenter study.

Fu W, Ma Z, Yang Z, Yu S, Zhang Y, Zhang X, Mei B, Meng Y, Ma C, Gong X

pubmed logopapersJun 1 2025
To develop and evaluate the performance of fully automated model based on deep learning and multiple logistics regression algorithm for image quality assessment (IQA) of carotid computed tomography angiography (CTA) images. This study retrospectively collected 840 carotid CTA images from four tertiary hospitals. Three radiologists independently assessed the image quality using a 3-point Likert scale, based on the degree of noise, vessel enhancement, arterial vessel contrast, vessel edge sharpness, and overall diagnostic acceptability. An automated assessment model was developed using a training dataset consisting of 600 carotid CTA images. The assessment steps included: (i) selection of objective representative slices; (ii) use of 3D Res U-net approach to extract objective indices from the representative slices and (iii) use of single objective index and multiple indices combinedly to develop logistic regression models for IQA. In the internal and external test datasets (n = 240), the performance of models was evaluated using sensitivity, specificity, precision, F-score, accuracy, the area under the receiver operating characteristic curve (AUC), and the IQA results of models was compared with radiologists' consensus. The representative slices were determined based on the same length model. The performance of multi-index model was excellent in internal and external test datasets with AUCs of 0.98 and 0.97. And the consistency between model and radiologists achieved 91.8% (95% CI: 87.0-96.5) and 92.6% (95 % CI: 86.9-98.4) in internal and external test datasets respectively. The fully automated multi-index model showed equivalent performance to the subjective perceptions of radiologists with greater efficiency for IQA.

Artificial intelligence in pediatric osteopenia diagnosis: evaluating deep network classification and model interpretability using wrist X-rays.

Harris CE, Liu L, Almeida L, Kassick C, Makrogiannis S

pubmed logopapersJun 1 2025
Osteopenia is a bone disorder that causes low bone density and affects millions of people worldwide. Diagnosis of this condition is commonly achieved through clinical assessment of bone mineral density (BMD). State of the art machine learning (ML) techniques, such as convolutional neural networks (CNNs) and transformer models, have gained increasing popularity in medicine. In this work, we employ six deep networks for osteopenia vs. healthy bone classification using X-ray imaging from the pediatric wrist dataset GRAZPEDWRI-DX. We apply two explainable AI techniques to analyze and interpret visual explanations for network decisions. Experimental results show that deep networks are able to effectively learn osteopenic and healthy bone features, achieving high classification accuracy rates. Among the six evaluated networks, DenseNet201 with transfer learning yielded the top classification accuracy at 95.2 %. Furthermore, visual explanations of CNN decisions provide valuable insight into the blackbox inner workings and present interpretable results. Our evaluation of deep network classification results highlights their capability to accurately differentiate between osteopenic and healthy bones in pediatric wrist X-rays. The combination of high classification accuracy and interpretable visual explanations underscores the promise of incorporating machine learning techniques into clinical workflows for the early and accurate diagnosis of osteopenia.

Tailoring ventilation and respiratory management in pediatric critical care: optimizing care with precision medicine.

Beauchamp FO, Thériault J, Sauthier M

pubmed logopapersJun 1 2025
Critically ill children admitted to the intensive care unit frequently need respiratory care to support the lung function. Mechanical ventilation is a complex field with multiples parameters to set. The development of precision medicine will allow clinicians to personalize respiratory care and improve patients' outcomes. Lung and diaphragmatic ultrasound, electrical impedance tomography, neurally adjusted ventilatory assist ventilation, as well as the use of monitoring data in machine learning models are increasingly used to tailor care. Each modality offers insights into different aspects of the patient's respiratory system function and enables the adjustment of treatment to better support the patient's physiology. Precision medicine in respiratory care has been associated with decreased ventilation time, increased extubation and ventilation wean success and increased ability to identify phenotypes to guide treatment and predict outcomes. This review will focus on the use of precision medicine in the setting of pediatric acute respiratory distress syndrome, asthma, bronchiolitis, extubation readiness trials and ventilation weaning, ventilation acquired pneumonia and other respiratory tract infections. Precision medicine is revolutionizing respiratory care and will decrease complications associated with ventilation. More research is needed to standardize its use and better evaluate its impact on patient outcomes.

Driving Knowledge to Action: Building a Better Future With Artificial Intelligence-Enabled Multidisciplinary Oncology.

Loaiza-Bonilla A, Thaker N, Chung C, Parikh RB, Stapleton S, Borkowski P

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is transforming multidisciplinary oncology at an unprecedented pace, redefining how clinicians detect, classify, and treat cancer. From earlier and more accurate diagnoses to personalized treatment planning, AI's impact is evident across radiology, pathology, radiation oncology, and medical oncology. By leveraging vast and diverse data-including imaging, genomic, clinical, and real-world evidence-AI algorithms can uncover complex patterns, accelerate drug discovery, and help identify optimal treatment regimens for each patient. However, realizing the full potential of AI also necessitates addressing concerns regarding data quality, algorithmic bias, explainability, privacy, and regulatory oversight-especially in low- and middle-income countries (LMICs), where disparities in cancer care are particularly pronounced. This study provides a comprehensive overview of how AI is reshaping cancer care, reviews its benefits and challenges, and outlines ethical and policy implications in line with ASCO's 2025 theme, <i>Driving Knowledge to Action.</i> We offer concrete calls to action for clinicians, researchers, industry stakeholders, and policymakers to ensure that AI-driven, patient-centric oncology is accessible, equitable, and sustainable worldwide.

An explainable adaptive channel weighting-based deep convolutional neural network for classifying renal disorders in computed tomography images.

Loganathan G, Palanivelan M

pubmed logopapersJun 1 2025
Renal disorders are a significant public health concern and a cause of mortality related to renal failure. Manual diagnosis is subjective, labor-intensive, and depends on the expertise of nephrologists in renal anatomy. To improve workflow efficiency and enhance diagnosis accuracy, we propose an automated deep learning model, called EACWNet, which incorporates adaptive channel weighting-based deep convolutional neural network and explainable artificial intelligence. The proposed model categorizes renal computed tomography images into various classes, such as cyst, normal, tumor, and stone. The adaptive channel weighting module utilizes both global and local contextual insights to refine the final feature map channel weights through the integration of a scale-adaptive channel attention module in the higher convolutional blocks of the VGG-19 backbone model employed in the proposed method. The efficacy of the EACWNet model has been assessed using a publicly available renal CT images dataset, attaining an accuracy of 98.87% and demonstrating a 1.75% improvement over the backbone model. However, this model exhibits class-wise precision variation, achieving higher precision for cyst, normal, and tumor cases but lower precision for the stone class due to its inherent variability and heterogeneity. Furthermore, the model predictions have been subjected to additional analysis using the explainable artificial intelligence method such as local interpretable model-agnostic explanations, to visualize better and understand the model predictions.
Page 180 of 2352345 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.