Prediction Model and Nomogram for Amyloid Positivity Using Clinical and MRI Features in Individuals With Subjective Cognitive Decline.
Authors
Affiliations (3)
Affiliations (3)
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
Abstract
There is an urgent need for the precise prediction of cerebral amyloidosis using noninvasive and accessible indicators to facilitate the early diagnosis of individuals with the preclinical stage of Alzheimer's disease (AD). Two hundred and four individuals with subjective cognitive decline (SCD) were enrolled in this study. All subjects completed neuropsychological assessments and underwent 18F-florbetapir PET, structural MRI, and functional MRI. A total of 315 features were extracted from the MRI, demographics, and neuropsychological scales and selected using the least absolute shrinkage and selection operator (LASSO). The logistic regression (LR) model, based on machine learning, was trained to classify SCD as either β-amyloid (Aβ) positive or negative. A nomogram was established using a multivariate LR model to predict the risk of Aβ+. The performance of the prediction model and nomogram was assessed with area under the curve (AUC) and calibration. The final model was based on the right rostral anterior cingulate thickness, the grey matter volume of the right inferior temporal, the ReHo of the left posterior cingulate gyrus and right superior temporal gyrus, as well as MoCA-B and AVLT-R. In the training set, the model achieved a good AUC of 0.78 for predicting Aβ+, with an accuracy of 0.72. The validation of the model also yielded a favorable discriminatory ability with an AUC of 0.88 and an accuracy of 0.83. We have established and validated a model based on cognitive, sMRI, and fMRI data that exhibits adequate discrimination. This model has the potential to predict amyloid status in the SCD group and provide a noninvasive, cost-effective way that might facilitate early screening, clinical diagnosis, and drug clinical trials.