Sort by:
Page 177 of 2442432 results

Diagnostic accuracy of machine learning-based magnetic resonance imaging models in breast cancer classification: a systematic review and meta-analysis.

Zhang J, Wu Q, Lei P, Zhu X, Li B

pubmed logopapersJun 11 2025
This meta-analysis evaluates the diagnostic accuracy of machine learning (ML)-based magnetic resonance imaging (MRI) models in distinguishing benign from malignant breast lesions and explores factors influencing their performance. A systematic search of PubMed, Embase, Cochrane Library, Scopus, and Web of Science identified 12 eligible studies (from 3,739 records) up to August 2024. Data were extracted to calculate sensitivity, specificity, and area under the curve (AUC) using bivariate models in R 4.4.1. Study quality was assessed via QUADAS-2. Pooled sensitivity and specificity were 0.86 (95% CI: 0.82-0.90) and 0.82 (95% CI: 0.78-0.86), respectively, with an overall AUC of 0.90 (95% CI: 0.85-0.90). Diagnostic odds ratio (DOR) was 39.11 (95% CI: 25.04-53.17). Support vector machine (SVM) classifiers outperformed Naive Bayes, with higher sensitivity (0.88 vs. 0.86) and specificity (0.82 vs. 0.78). Heterogeneity was primarily attributed to MRI equipment (P = 0.037). ML-based MRI models demonstrate high diagnostic accuracy for breast cancer classification, with pooled sensitivity of 0.86 (95% CI: 0.82-0.90), specificity of 0.82 (95% CI: 0.78-0.86), and AUC of 0.90 (95% CI: 0.85-0.90). These results support their clinical utility as screening and diagnostic adjuncts, while highlighting the need for standardized protocols to improve generalizability.

Identification of Atypical Scoliosis Patterns Using X-ray Images Based on Fine-Grained Techniques in Deep Learning.

Chen Y, He Z, Yang KG, Qin X, Lau AY, Liu Z, Lu N, Cheng JC, Lee WY, Chui EC, Qiu Y, Liu X, Chen X, Zhu Z

pubmed logopapersJun 11 2025
Study DesignRetrospective diagnostic study.ObjectivesTo develop a fine-grained classification model based on deep learning using X-ray images, to screen for scoliosis, and further to screen for atypical scoliosis patterns associated with Chiari Malformation type I (CMS).MethodsA total of 508 pairs of coronal and sagittal X-ray images from patients with CMS, adolescent idiopathic scoliosis (AIS), and normal controls (NC) were processed through construction of the ResNet-50 model, including the development of ResNet-50 Coronal, ResNet-50 Sagittal, ResNet-50 Dual, ResNet-50 Concat, and ResNet-50 Bilinear models. Evaluation metrics calculated included accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for both the scoliosis diagnosis system and the CMS diagnosis system, along with the generation of receiver operating characteristic (ROC) curves and heatmaps for CMS diagnosis.ResultsThe classification results for the scoliosis diagnosis system showed that the ResNet-50 Coronal model had the best overall performance. For the CMS diagnosis system, the ResNet-50 Coronal and ResNet-50 Dual models demonstrated optimal performance. Specifically, the ResNet-50 Dual model reached the diagnostic level of senior spine surgeons, and the ResNet-50 Coronal model even surpassed senior surgeons in specificity and PPV. The CMS heatmaps revealed that major classification weights were concentrated on features such as atypical curve types, significant lateral shift of scoliotic segments, longer affected segments, and severe trunk tilt.ConclusionsThe fine-grained classification model based on the ResNet-50 network can accurately screen for atypical scoliosis patterns associated with CMS, highlighting the importance of radiographic features such as atypical curve types in model classification.

A Deep Learning Model for Identifying the Risk of Mesenteric Malperfusion in Acute Aortic Dissection Using Initial Diagnostic Data: Algorithm Development and Validation.

Jin Z, Dong J, Li C, Jiang Y, Yang J, Xu L, Li P, Xie Z, Li Y, Wang D, Ji Z

pubmed logopapersJun 10 2025
Mesenteric malperfusion (MMP) is an uncommon but devastating complication of acute aortic dissection (AAD) that combines 2 life-threatening conditions-aortic dissection and acute mesenteric ischemia. The complex pathophysiology of MMP poses substantial diagnostic and management challenges. Currently, delayed diagnosis remains a critical contributor to poor outcomes because of the absence of reliable individualized risk assessment tools. This study aims to develop and validate a deep learning-based model that integrates multimodal data to identify patients with AAD at high risk of MMP. This multicenter retrospective study included 525 patients with AAD from 2 hospitals. The training and internal validation cohort consisted of 450 patients from Beijing Anzhen Hospital, whereas the external validation cohort comprised 75 patients from Nanjing Drum Tower Hospital. Three machine learning models were developed: the benchmark model using laboratory parameters, the multiorgan feature-based AAD complicating MMP (MAM) model based on computed tomography angiography images, and the integrated model combining both data modalities. Model performance was assessed using the area under the curve, accuracy, sensitivity, specificity, and Brier score. To improve interpretability, gradient-weighted class activation mapping was used to identify and visualize discriminative imaging features. Univariate and multivariate regression analyses were used to evaluate the prognostic significance of the risk score generated by the optimal model. In the external validation cohort, the integrated model demonstrated superior performance, with an area under the curve of 0.780 (95% CI 0.777-0.785), which was significantly greater than those of the benchmark model (0.586, 95% CI 0.574-0.586) and the MAM model (0.732, 95% CI 0.724-0.734). This highlights the benefits of multimodal integration over single-modality approaches. Additional classification metrics revealed that the integrated model had an accuracy of 0.760 (95% CI 0.758-0.764), a sensitivity of 0.667 (95% CI 0.659-0.675), a specificity of 0.783 (95% CI 0.781-0.788), and a Brier score of 0.143 (95% CI 0.143-0.145). Moreover, gradient-weighted class activation mapping visualizations of the MAM model revealed that during positive predictions, the model focused more on key anatomical areas, particularly the superior mesenteric artery origin and intestinal regions with characteristic gas or fluid accumulation. Univariate and multivariate analyses also revealed that the risk score derived from the integrated model was independently associated with inhospital mortality risk among patients with AAD undergoing endovascular or surgical treatment (odds ratio 1.030, 95% CI 1.004-1.056; P=.02). Our findings demonstrate that compared with unimodal approaches, an integrated deep learning model incorporating both imaging and clinical data has greater diagnostic accuracy for MMP in patients with AAD. This model may serve as a valuable tool for early risk identification, facilitating timely therapeutic decision-making. Further prospective validation is warranted to confirm its clinical utility. Chinese Clinical Registry Center ChiCTR2400086050; http://www.chictr.org.cn/showproj.html?proj=226129.

An Explainable Deep Learning Framework for Brain Stroke and Tumor Progression via MRI Interpretation

Rajan Das Gupta, Md Imrul Hasan Showmick, Mushfiqur Rahman Abir, Shanjida Akter, Md. Yeasin Rahat, Md. Jakir Hossen

arxiv logopreprintJun 10 2025
Early and accurate detection of brain abnormalities, such as tumors and strokes, is essential for timely intervention and improved patient outcomes. In this study, we present a deep learning-based system capable of identifying both brain tumors and strokes from MRI images, along with their respective stages. We have executed two groundbreaking strategies involving convolutional neural networks, MobileNet V2 and ResNet-50-optimized through transfer learning to classify MRI scans into five diagnostic categories. Our dataset, aggregated and augmented from various publicly available MRI sources, was carefully curated to ensure class balance and image diversity. To enhance model generalization and prevent overfitting, we applied dropout layers and extensive data augmentation. The models achieved strong performance, with training accuracy reaching 93\% and validation accuracy up to 88\%. While ResNet-50 demonstrated slightly better results, Mobile Net V2 remains a promising option for real-time diagnosis in low resource settings due to its lightweight architecture. This research offers a practical AI-driven solution for early brain abnormality detection, with potential for clinical deployment and future enhancement through larger datasets and multi modal inputs.

Uncovering Image-Driven Subtypes with Distinct Pathology and Clinical Course in Autopsy-Confirmed Four Repeat Tauopathies.

Satoh R, Sekiya H, Ali F, Clark HM, Utianski RL, Duffy JR, Machulda MM, Dickson DW, Josephs KA, Whitwell JL

pubmed logopapersJun 10 2025
The four-repeat (4R) tauopathies are a group of neurodegenerative diseases, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and globular glial tauopathy (GGT). This study aimed to characterize spatiotemporal atrophy progression using structural magnetic resonance imaging (MRI) and to examine its relationship with clinical course and neuropathology in a cohort of autopsy-confirmed 4R tauopathies. The study included 85 autopsied patients (54 with PSP, 28 with CBD, and 3 with GGT) who underwent multiple 3T MRI scans, as well as neuropsychological, neurological, and speech/language examinations, and standardized postmortem neuropathological evaluations. An unsupervised machine-learning algorithm, Subtype and Stage Inference (SuStaIn), was applied to the cross-sectional brain volumes to estimate spatiotemporal atrophy patterns and data-driven subtypes and stages in each patient. The relationships among estimated subtypes, pathological diagnoses, and longitudinal changes in clinical testing were examined. The SuStaIn algorithm identified 2 distinct subtypes: (1) the subcortical subtype, in which atrophy progresses from the midbrain to the cortex, and (2) the cortical subtype, in which atrophy progresses from the frontal cortex to the subcortical regions. The subcortical subtype was more associated with typical PSP, whereas the cortical subtype was more associated with atypical PSP with a cortical distribution of pathology and CBD (p < 0.001). The cortical subtype had a faster rate of change on the PSP Rating Scale than the subcortical subtype (p < 0.05). SuStaIn analysis revealed 2 MRI-driven subtypes with distinct spatiotemporal atrophy patterns, clinical courses, and neuropathology. Our findings contribute to a comprehensive and improved understanding of disease progression and its relationship to tau pathology in 4R tauopathies. ANN NEUROL 2025.

The RSNA Lumbar Degenerative Imaging Spine Classification (LumbarDISC) Dataset

Tyler J. Richards, Adam E. Flanders, Errol Colak, Luciano M. Prevedello, Robyn L. Ball, Felipe Kitamura, John Mongan, Maryam Vazirabad, Hui-Ming Lin, Anne Kendell, Thanat Kanthawang, Salita Angkurawaranon, Emre Altinmakas, Hakan Dogan, Paulo Eduardo de Aguiar Kuriki, Arjuna Somasundaram, Christopher Ruston, Deniz Bulja, Naida Spahovic, Jennifer Sommer, Sirui Jiang, Eduardo Moreno Judice de Mattos Farina, Eduardo Caminha Nunes, Michael Brassil, Megan McNamara, Johanna Ortiz, Jacob Peoples, Vinson L. Uytana, Anthony Kam, Venkata N. S. Dola, Daniel Murphy, David Vu, Dataset Contributor Group, Dataset Annotator Group, Competition Data Notebook Group, Jason F. Talbott

arxiv logopreprintJun 10 2025
The Radiological Society of North America (RSNA) Lumbar Degenerative Imaging Spine Classification (LumbarDISC) dataset is the largest publicly available dataset of adult MRI lumbar spine examinations annotated for degenerative changes. The dataset includes 2,697 patients with a total of 8,593 image series from 8 institutions across 6 countries and 5 continents. The dataset is available for free for non-commercial use via Kaggle and RSNA Medical Imaging Resource of AI (MIRA). The dataset was created for the RSNA 2024 Lumbar Spine Degenerative Classification competition where competitors developed deep learning models to grade degenerative changes in the lumbar spine. The degree of spinal canal, subarticular recess, and neural foraminal stenosis was graded at each intervertebral disc level in the lumbar spine. The images were annotated by expert volunteer neuroradiologists and musculoskeletal radiologists from the RSNA, American Society of Neuroradiology, and the American Society of Spine Radiology. This dataset aims to facilitate research and development in machine learning and lumbar spine imaging to lead to improved patient care and clinical efficiency.

Preoperative prediction model for benign and malignant gallbladder polyps on the basis of machine-learning algorithms.

Zeng J, Hu W, Wang Y, Jiang Y, Peng J, Li J, Liu X, Zhang X, Tan B, Zhao D, Li K, Zhang S, Cao J, Qu C

pubmed logopapersJun 10 2025
This study aimed to differentiate between benign and malignant gallbladder polyps preoperatively by developing a prediction model integrating preoperative transabdominal ultrasound and clinical features using machine-learning algorithms. A retrospective analysis was conducted on clinical and ultrasound data from 1,050 patients at 2 centers who underwent cholecystectomy for gallbladder polyps. Six machine-learning algorithms were used to develop preoperative models for predicting benign and malignant gallbladder polyps. Internal and external test cohorts evaluated model performance. The Shapley Additive Explanations algorithm was used to understand feature importance. The main study cohort included 660 patients with benign polyps and 285 patients with malignant polyps, randomly divided into a 3:1 stratified training and internal test cohorts. The external test cohorts consisted of 73 benign and 32 malignant polyps. In the training cohort, the Shapley Additive Explanations algorithm, on the basis of variables selected by Least Absolute Shrinkage and Selection Operator regression and multivariate logistic regression, further identified 6 key predictive factors: polyp size, age, fibrinogen, carbohydrate antigen 19-9, presence of stones, and cholinesterase. Using these factors, 6 predictive models were developed. The random forest model outperformed others, with an area under the curve of 0.963, 0.940, and 0.958 in the training, internal, and external test cohorts, respectively. Compared with previous studies, the random forest model demonstrated excellent clinical utility and predictive performance. In addition, the Shapley Additive Explanations algorithm was used to visualize feature importance, and an online calculation platform was developed. The random forest model, combining preoperative ultrasound and clinical features, accurately predicts benign and malignant gallbladder polyps, offering valuable guidance for clinical decision-making.

Multivariate brain morphological patterns across mood disorders: key roles of frontotemporal and cerebellar areas.

Kandilarova S, Maggioni E, Squarcina L, Najar D, Homadi M, Tassi E, Stoyanov D, Brambilla P

pubmed logopapersJun 10 2025
Differentiating major depressive disorder (MDD) from bipolar disorder (BD) remains a significant clinical challenge, as both disorders exhibit overlapping symptoms but require distinct treatment approaches. Advances in voxel-based morphometry and surface-based morphometry have facilitated the identification of structural brain abnormalities that may serve as diagnostic biomarkers. This study aimed to explore the relationships between brain morphological features, such as grey matter volume (GMV) and cortical thickness (CT), and demographic and clinical variables in patients with MDD and BD and healthy controls (HC) using multivariate analysis methods. A total of 263 participants, including 120 HC, 95 patients with MDD and 48 patients with BD, underwent T1-weighted MRI. GMV and CT were computed for standardised brain regions, followed by multivariate partial least squares (PLS) regression to assess associations with demographic and diagnostic variables. Reductions in frontotemporal CT were observed in MDD and BD compared with HC, but distinct trends between BD and MDD were also detected for the CT of selective temporal, frontal and parietal regions. Differential patterns in cerebellar GMV were also identified, with lobule CI larger in MDD and lobule CII larger in BD. Additionally, BD showed the same trend as ageing concerning reductions in CT and posterior cerebellar and striatal GMV. Depression severity showed a transdiagnostic link with reduced frontotemporal CT. This study highlights shared and distinct structural brain alterations in MDD and BD, emphasising the potential of neuroimaging biomarkers to enhance diagnostic accuracy. Accelerated cortical thinning and differential cerebellar changes in BD may serve as targets for future research and clinical interventions. Our findings underscore the value of objective neuroimaging markers in increasing the precision of mood disorder diagnoses, improving treatment outcomes.

Sonopermeation combined with stroma normalization enables complete cure using nano-immunotherapy in murine breast tumors.

Neophytou C, Charalambous A, Voutouri C, Angeli S, Panagi M, Stylianopoulos T, Mpekris F

pubmed logopapersJun 10 2025
Nano-immunotherapy shows great promise in improving patient outcomes, as seen in advanced triple-negative breast cancer, but it does not cure the disease, with median survival under two years. Therefore, understanding resistance mechanisms and developing strategies to enhance its effectiveness in breast cancer is crucial. A key resistance mechanism is the pronounced desmoplasia in the tumor microenvironment, which leads to dysfunction of tumor blood vessels and thus, to hypoperfusion, limited drug delivery and hypoxia. Ultrasound sonopermeation and agents that normalize the tumor stroma have been employed separately to restore vascular abnormalities in tumors with some success. Here, we performed in vivo studies in two murine, orthotopic breast tumor models to explore if combination of ultrasound sonopermeation with a stroma normalization drug can synergistically improve tumor perfusion and enhance the efficacy of nano-immunotherapy. We found that the proposed combinatorial treatment can drastically reduce primary tumor growth and in many cases tumors were no longer measurable. Overall survival studies showed that all mice that received the combination treatment survived and rechallenge experiments revealed that the survivors obtained immunological memory. Employing ultrasound elastography and contrast enhanced ultrasound along with proteomics analysis, flow cytometry and immunofluorescene staining, we found the combinatorial treatment reduced tumor stiffness to normal levels, restoring tumor perfusion and oxygenation. Furthermore, it increased infiltration and activity of immune cells and altered the levels of immunosupportive chemokines. Finally, using machine learning analysis, we identified that tumor stiffness, CD8<sup>+</sup> T cells and M2-type macrophages were strong predictors of treatment response.

DIsoN: Decentralized Isolation Networks for Out-of-Distribution Detection in Medical Imaging

Felix Wagner, Pramit Saha, Harry Anthony, J. Alison Noble, Konstantinos Kamnitsas

arxiv logopreprintJun 10 2025
Safe deployment of machine learning (ML) models in safety-critical domains such as medical imaging requires detecting inputs with characteristics not seen during training, known as out-of-distribution (OOD) detection, to prevent unreliable predictions. Effective OOD detection after deployment could benefit from access to the training data, enabling direct comparison between test samples and the training data distribution to identify differences. State-of-the-art OOD detection methods, however, either discard training data after deployment or assume that test samples and training data are centrally stored together, an assumption that rarely holds in real-world settings. This is because shipping training data with the deployed model is usually impossible due to the size of training databases, as well as proprietary or privacy constraints. We introduce the Isolation Network, an OOD detection framework that quantifies the difficulty of separating a target test sample from the training data by solving a binary classification task. We then propose Decentralized Isolation Networks (DIsoN), which enables the comparison of training and test data when data-sharing is impossible, by exchanging only model parameters between the remote computational nodes of training and deployment. We further extend DIsoN with class-conditioning, comparing a target sample solely with training data of its predicted class. We evaluate DIsoN on four medical imaging datasets (dermatology, chest X-ray, breast ultrasound, histopathology) across 12 OOD detection tasks. DIsoN performs favorably against existing methods while respecting data-privacy. This decentralized OOD detection framework opens the way for a new type of service that ML developers could provide along with their models: providing remote, secure utilization of their training data for OOD detection services. Code will be available upon acceptance at: *****
Page 177 of 2442432 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.