A Deep Learning Model for Identifying the Risk of Mesenteric Malperfusion in Acute Aortic Dissection Using Initial Diagnostic Data: Algorithm Development and Validation.
Authors
Affiliations (7)
Affiliations (7)
- Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Department of Cardiovascular Surgery, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China.
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
Abstract
Mesenteric malperfusion (MMP) is an uncommon but devastating complication of acute aortic dissection (AAD) that combines 2 life-threatening conditions-aortic dissection and acute mesenteric ischemia. The complex pathophysiology of MMP poses substantial diagnostic and management challenges. Currently, delayed diagnosis remains a critical contributor to poor outcomes because of the absence of reliable individualized risk assessment tools. This study aims to develop and validate a deep learning-based model that integrates multimodal data to identify patients with AAD at high risk of MMP. This multicenter retrospective study included 525 patients with AAD from 2 hospitals. The training and internal validation cohort consisted of 450 patients from Beijing Anzhen Hospital, whereas the external validation cohort comprised 75 patients from Nanjing Drum Tower Hospital. Three machine learning models were developed: the benchmark model using laboratory parameters, the multiorgan feature-based AAD complicating MMP (MAM) model based on computed tomography angiography images, and the integrated model combining both data modalities. Model performance was assessed using the area under the curve, accuracy, sensitivity, specificity, and Brier score. To improve interpretability, gradient-weighted class activation mapping was used to identify and visualize discriminative imaging features. Univariate and multivariate regression analyses were used to evaluate the prognostic significance of the risk score generated by the optimal model. In the external validation cohort, the integrated model demonstrated superior performance, with an area under the curve of 0.780 (95% CI 0.777-0.785), which was significantly greater than those of the benchmark model (0.586, 95% CI 0.574-0.586) and the MAM model (0.732, 95% CI 0.724-0.734). This highlights the benefits of multimodal integration over single-modality approaches. Additional classification metrics revealed that the integrated model had an accuracy of 0.760 (95% CI 0.758-0.764), a sensitivity of 0.667 (95% CI 0.659-0.675), a specificity of 0.783 (95% CI 0.781-0.788), and a Brier score of 0.143 (95% CI 0.143-0.145). Moreover, gradient-weighted class activation mapping visualizations of the MAM model revealed that during positive predictions, the model focused more on key anatomical areas, particularly the superior mesenteric artery origin and intestinal regions with characteristic gas or fluid accumulation. Univariate and multivariate analyses also revealed that the risk score derived from the integrated model was independently associated with inhospital mortality risk among patients with AAD undergoing endovascular or surgical treatment (odds ratio 1.030, 95% CI 1.004-1.056; P=.02). Our findings demonstrate that compared with unimodal approaches, an integrated deep learning model incorporating both imaging and clinical data has greater diagnostic accuracy for MMP in patients with AAD. This model may serve as a valuable tool for early risk identification, facilitating timely therapeutic decision-making. Further prospective validation is warranted to confirm its clinical utility. Chinese Clinical Registry Center ChiCTR2400086050; http://www.chictr.org.cn/showproj.html?proj=226129.