Sort by:
Page 17 of 56552 results

Diagnostic performance of ultrasound S-Detect technology in evaluating BI-RADS-4 breast nodules ≤ 20 mm and > 20 mm.

Xing B, Gu C, Fu C, Zhang B, Tan Y

pubmed logopapersAug 12 2025
This study aimed to explore the diagnostic performance of ultrasound S-Detect in differentiating Breast Imaging-Reporting and Data System (BI-RADS) 4 breast nodules ≤ 20 mm and > 20 mm. Between November 2020 and November 2022, a total of 382 breast nodules in 312 patients were classified as BI-RADS-4 by conventional ultrasound. Using pathology results as the gold standard, we applied receiver operator characteristics (ROC), sensitivity (SE), specificity (SP), accuracy (ACC), positive predictive value (PPV), and negative predictive value (NPV) to analyze the diagnostic value of BI-RADS, S-Detect, and the two techniques in combination (Co-Detect) in the diagnosis of BI-RADS 4 breast nodules ≤ 20 mm and > 20 mm. There were 382 BI-RADS-4 nodules, of which 151 were pathologically confirmed as malignant, and 231 as benign. In lesions ≤ 20 mm, the SE, SP, ACC, PPV, NPV, and area under the curve (AUC) of the BI-RADS group were 77.27%, 89.73%, 85.71%, 78.16%, 89.24%, 0.835, respectively. SE, SP, ACC, PPV, NPV, and AUC of the S-Detect group were 92.05%, 78.92%, 83.15%, 67.50%, 95.43%, 0.855, respectively. SE, SP, ACC, PPV, NPV, and AUC of the Co-Detect group were 89.77%, 93.51%, 92.31%, 86.81%, 95.05%, 0.916, respectively. The differences of SE, ACC, NPV, and AUC between the BI-RADS group and the Co-Detect group were statistically significant (P < 0.05). In lesions > 20 mm, SE, SP, ACC, PPV, NPV, and AUC of the BI-RADS group were 88.99%, 89.13%, 88.99%, 91.80%, 85.42%, 0.890, respectively. SE, SP, ACC, PPV, NPV, and AUC of the S-Detect group were 98.41%, 69.57%, 86.24%, 81.58%, 96.97%, 0.840, respectively. SE, SP, ACC, PPV, NPV, and AUC of the Co-Detect group were 98.41%, 91.30%, 95.41%, 93.94%, 97.67%, 0.949, respectively. A total of 166 BI-RADS 4 A nodules were downgraded to category 3 by Co-Detect, with 160 (96.4%) confirmed as benign and 6 (all ≤ 20 mm) as false negatives. Conversely, 25 nodules were upgraded to 4B, of which 19 (76.0%) were malignant. The difference in AUC between the BI-RADS group and the Co-Detect group was statistically significant (P < 0.05). S-Detect combined with BI-RADS is effective in the differential diagnosis of BI-RADS 4 breast nodules ≤ 20 mm and > 20 mm. However, its performance is particularly pronounced in lesions ≤ 20 mm, where it contributes to a significant reduction in unnecessary biopsies.

Predicting coronary artery abnormalities in Kawasaki disease: Model development and external validation

Wang, Q., Kimura, Y., Oba, J., Ishikawa, T., Ohnishi, T., Akahoshi, S., Iio, K., Morikawa, Y., Sakurada, K., Kobayashi, T., Miura, M.

medrxiv logopreprintAug 12 2025
BackgroundKawasaki disease (KD) is an acute, pediatric vasculitis associated with coronary artery abnormality (CAA) development. Echocardiography at month 1 post-diagnosis remains the standard for CAA surveillance despite limitations, including patient distress and increased healthcare burden. With declining CAA incidence due to improved treatment, the need for routine follow-up imaging is being reconsidered. This study aimed to develop and externally validate models for predicting CAA development and guide the need for echocardiography. MethodsThis study used two prospective multicenter Japanese registries: PEACOCK for model development and internal validation, and Post-RAISE for external validation. The primary outcome was CAA at the month 1 follow-up, defined as a maximum coronary artery Z score (Zmax) [&ge;] 2. Twenty-nine clinical, laboratory, echocardiographic, and treatment-related variables obtained within one week of diagnosis were selected as predictors. The models included simple models using the previous Zmax as a single predictor, logistic regression models, and machine learning models (LightGBM and XGBoost). Their discrimination, calibration, and clinical utility were assessed. ResultsAfter excluding patients without outcome data, 4,973 and 2,438 patients from PEACOCK and Post-RAISE, respectively, were included. The CAA incidence at month 1 was 5.5% and 6.8% for the respective group. For external validation, a simple model using the Zmax at week 1 produced an area under the curve of 0.79, which failed to improve by more than 0.02 after other variables were added or more complex models were used. Even the best-performing models with a highly sensitive threshold failed to reduce the need for echocardiography at month 1 by more than 30% while maintaining the number of undiagnosed CAA cases to less than ten. The predictive performance declined considerably when the Zmax was omitted from the multivariable models. ConclusionsThe Zmax at week 1 was the strongest predictor of CAA at month 1 post-diagnosis. Even advanced models incorporating additional variables failed to achieve a clinically acceptable trade-off between reducing the need for echocardiography and reducing the number of undiagnosed CAA cases. Until superior predictors are identified, echocardiography at month 1 should remain the standard practice. Clinical PerspectiveO_ST_ABSWhat Is New?C_ST_ABSO_LIThe maximum Z score on echocardiography one week after diagnosis was the strongest of 29 variables for predicting coronary artery abnormalities (CAA) in patients with Kawasaki disease. C_LIO_LIEven the most sensitive models had a suboptimal ability to predict CAA development and reduce the need for imaging studies, suggesting they have limited utility in clinical decision-making. C_LI What Are the Clinical Implications?O_LIUntil more accurate predictors are found or imaging strategies are optimized, performing echocardiography at one-month follow-up should remain the standard of care. C_LI

[Development of a machine learning-based diagnostic model for T-shaped uterus using transvaginal 3D ultrasound quantitative parameters].

Li SJ, Wang Y, Huang R, Yang LM, Lyu XD, Huang XW, Peng XB, Song DM, Ma N, Xiao Y, Zhou QY, Guo Y, Liang N, Liu S, Gao K, Yan YN, Xia EL

pubmed logopapersAug 12 2025
<b>Objective:</b> To develop a machine learning diagnostic model for T-shaped uterus based on quantitative parameters from 3D transvaginal ultrasound. <b>Methods:</b> A retrospective cross-sectional study was conducted, recruiting 304 patients who visited the hysteroscopy centre of Fuxing Hospital, Beijing, China, between July 2021 and June 2024 for reasons such as "infertility or recurrent pregnancy loss" and other adverse obstetric histories. Twelve experts, including seven clinicians and five sonographers, from Fuxing Hospital and Beijing Obstetrics and Gynecology Hospital of Capital Medical University, Peking University People's Hospital, and Beijing Hospital, independently and anonymously assessed the diagnosis of T-shaped uterus using a modified Delphi method. Based on the consensus results, 56 cases were classified into the T-shaped uterus group and 248 cases into the non-T-shaped uterus group. A total of 7 clinical features and 14 sonographic features were initially included. Features demonstrating significant diagnostic impact were selected using 10-fold cross-validated LASSO (Least Absolute Shrinkage and Selection Operator) regression. Four machine learning algorithms [logistic regression (LR), decision tree (DT), random forest (RF), and support vector machine (SVM)] were subsequently implemented to develop T-shaped uterus diagnostic models. Using the Python random module, the patient dataset was randomly divided into five subsets, each maintaining the original class distribution (T-shaped uterus: non-T-shaped uterus ≈ 1∶4) and a balanced number of samples between the two categories. Five-fold cross-validation was performed, with four subsets used for training and one for validation in each round, to enhance the reliability of model evaluation. Model performance was rigorously assessed using established metrics: area under the curve (AUC) of receiver operator characteristic (ROC) curve, sensitivity, specificity, precision, and F1-score. In the RF model, feature importance was assessed by the mean decrease in Gini impurity attributed to each variable. <b>Results:</b> A total of 304 patients had a mean age of (35±4) years, and the age of the T-shaped uterus group was (35±5) years; the age of the non-T-shaped uterus group was (34±4) years.. Eight features with non-zero coefficients were selected by LASSO regression, including average lateral wall indentation width, average lateral wall indentation angle, upper cavity depth, endometrial thickness, uterine cavity area, cavity width at level of lateral wall indentation, angle formed by the bilateral lateral walls, and average cornual angle (coefficient: 0.125, -0.064,-0.037,-0.030,-0.026,-0.025,-0.025 and -0.024, respectively). The RF model showed the best diagnostic performance: in training set, AUC was 0.986 (95%<i>CI</i>: 0.980-0.992), sensitivity was 0.978, specificity 0.946, precision 0.802, and F1-score 0.881; in testing set, AUC was 0.948 (95%<i>CI</i>: 0.911-0.985), sensitivity was 0.873, specificity 0.919, precision 0.716, and F1-score 0.784. RF model feature importance analysis revealed that average lateral wall indentation width, upper cavity depth, and average lateral wall indentation angle were the top three features (over 65% in total), playing a decisive role in model prediction. <b>Conclusion:</b> The machine learning models developed in this study, particularly the RF model, are promising for the diagnosis of T-shaped uterus, offering new perspectives and technical support for clinical practice.

PADReg: Physics-Aware Deformable Registration Guided by Contact Force for Ultrasound Sequences

Yimeng Geng, Mingyang Zhao, Fan Xu, Guanglin Cao, Gaofeng Meng, Hongbin Liu

arxiv logopreprintAug 12 2025
Ultrasound deformable registration estimates spatial transformations between pairs of deformed ultrasound images, which is crucial for capturing biomechanical properties and enhancing diagnostic accuracy in diseases such as thyroid nodules and breast cancer. However, ultrasound deformable registration remains highly challenging, especially under large deformation. The inherently low contrast, heavy noise and ambiguous tissue boundaries in ultrasound images severely hinder reliable feature extraction and correspondence matching. Existing methods often suffer from poor anatomical alignment and lack physical interpretability. To address the problem, we propose PADReg, a physics-aware deformable registration framework guided by contact force. PADReg leverages synchronized contact force measured by robotic ultrasound systems as a physical prior to constrain the registration. Specifically, instead of directly predicting deformation fields, we first construct a pixel-wise stiffness map utilizing the multi-modal information from contact force and ultrasound images. The stiffness map is then combined with force data to estimate a dense deformation field, through a lightweight physics-aware module inspired by Hooke's law. This design enables PADReg to achieve physically plausible registration with better anatomical alignment than previous methods relying solely on image similarity. Experiments on in-vivo datasets demonstrate that it attains a HD95 of 12.90, which is 21.34\% better than state-of-the-art methods. The source code is available at https://github.com/evelynskip/PADReg.

Using Machine Learning to Improve the Contrast-Enhanced Ultrasound Liver Imaging Reporting and Data System Diagnosis of Hepatocellular Carcinoma in Indeterminate Liver Nodules.

Hoopes JR, Lyshchik A, Xiao TS, Berzigotti A, Fetzer DT, Forsberg F, Sidhu PS, Wessner CE, Wilson SR, Keith SW

pubmed logopapersAug 11 2025
Liver cancer ranks among the most lethal cancers. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and better diagnostic tools are needed to diagnose patients at risk. The aim is to develop a machine learning algorithm that enhances the sensitivity and specificity of the Contrast-Enhanced Ultrasound Liver Imaging Reporting and Data System (CEUS-LIRADS) in classifying indeterminate at-risk liver nodules (LR-M, LR-3, LR-4) as HCC or non-HCC. Our study includes patients at risk for HCC with untreated indeterminate focal liver observations detected on US or contrast-enhanced CT or MRI performed as part of their clinical standard of care from January 2018 to November 2022. Recursive partitioning was used to improve HCC diagnosis in indeterminate at-risk nodules. Demographics, blood biomarkers, and CEUS imaging features were evaluated as potential predictors for the algorithm to classify nodules as HCC or non-HCC. We evaluated 244 indeterminate liver nodules from 224 patients (mean age 62.9 y). Of the nodules, 73.2% (164/224) were from males. The algorithm was trained on a random 2/3 partition of 163 liver nodules and correctly reclassified more than half of the HCC liver nodules previously categorized as indeterminate in the independent 1/3 test partition of 81 liver nodules, achieving a sensitivity of 56.3% (95% CI: 42.0%, 70.2%) and specificity of 93.9% (95% CI: 84.4%, 100.0%). Machine learning was applied to the multicenter, multinational study of CEUS LI-RADS indeterminate at-risk liver nodules and correctly diagnosed HCC in more than half of the HCC nodules.

Decoding fetal motion in 4D ultrasound with DeepLabCut.

Inubashiri E, Kaishi Y, Miyake T, Yamaguchi R, Hamaguchi T, Inubashiri M, Ota H, Watanabe Y, Deguchi K, Kuroki K, Maeda N

pubmed logopapersAug 11 2025
This study aimed to objectively and quantitatively analyze fetal motor behavior using DeepLabCut (DLC), a markerless posture estimation tool based on deep learning, applied to four-dimensional ultrasound (4DUS) data collected during the second trimester. We propose a novel clinical method for precise assessment of fetal neurodevelopment. Fifty 4DUS video recordings of normal singleton fetuses aged 12 to 22 gestational weeks were analyzed. Eight fetal joints were manually labeled in 2% of each video to train a customized DLC model. The model's accuracy was evaluated using likelihood scores. Intra- and inter-rater reliability of manual labeling were assessed using intraclass correlation coefficients (ICC). Angular velocity time series derived from joint coordinates were analyzed to quantify fetal movement patterns and developmental coordination. Manual labeling demonstrated excellent reproducibility (inter-rater ICC = 0.990, intra-rater ICC = 0.961). The trained DLC model achieved a mean likelihood score of 0.960, confirming high tracking accuracy. Kinematic analysis revealed developmental trends: localized rapid limb movements were common at 12-13 weeks; movements became more coordinated and systemic by 18-20 weeks, reflecting advancing neuromuscular maturation. Although a modest increase in tracking accuracy was observed with gestational age, this trend did not reach statistical significance (p < 0.001). DLC enables precise quantitative analysis of fetal motor behavior from 4DUS recordings. This AI-driven approach offers a promising, noninvasive alternative to conventional qualitative assessments, providing detailed insights into early fetal neurodevelopmental trajectories and potential early screening for neurodevelopmental disorders.

C<sup>5</sup>-net: Cross-organ cross-modality cswin-transformer coupled convolutional network for dual task transfer learning in lymph node segmentation and classification.

Wang M, Chen H, Mao L, Jiao W, Han H, Zhang Q

pubmed logopapersAug 11 2025
Deep learning has made notable strides in the ultrasonic diagnosis of lymph nodes, yet it faces three primary challenges: a limited number of lymph node images and a scarcity of annotated data; difficulty in comprehensively learning both local and global semantic information; and obstacles in collaborative learning for both image segmentation and classification to achieve accurate diagnosis. To address these issues, we propose the Cross-organ Cross-modality Cswin-transformer Coupled Convolutional Network (C<sup>5</sup>-Net). First, we design a cross-organ and cross-modality transfer learning strategy to leverage skin lesion dermoscopic images, which have abundant annotations and share similarities in fields of view and morphology with the lymph node ultrasound images. Second, we couple Transformer and convolutional network to comprehensively learn both local details and global information. Third, the encoder weights in the C<sup>5</sup>-Net are shared between segmentation and classification tasks to exploit the synergistic knowledge, enhancing overall performance in ultrasound lymph node diagnosis. Our study leverages 690 lymph node ultrasound images and 1000 skin lesion dermoscopic images. Experimental results show that our C<sup>5</sup>-Net achieves the best segmentation and classification performance for lymph nodes among advanced methods, with the Dice coefficient of segmentation equaling 0.854, and the accuracy of classification equaling 0.874. Our method has consistently shown accuracy and robustness in the segmentation and classification of lymph nodes, contributing to the early and accurate detection of lymph nodal malignancy, which is potentially essential for effective treatment planning in clinical oncology.

A Deep Learning-Based Automatic Recognition Model for Polycystic Ovary Ultrasound Images.

Zhao B, Wen L, Huang Y, Fu Y, Zhou S, Liu J, Liu M, Li Y

pubmed logopapersAug 11 2025
Polycystic ovary syndrome (PCOS) has a significant impact on endocrine metabolism, reproductive function, and mental health in women of reproductive age. Ultrasound remains an essential diagnostic tool for PCOS, particularly in individuals presenting with oligomenorrhea or ovulatory dysfunction accompanied by polycystic ovaries, as well as hyperandrogenism associated with polycystic ovaries. However, the accuracy of ultrasound in identifying polycystic ovarian morphology remains variable. To develop a deep learning model capable of rapidly and accurately identifying PCOS using ovarian ultrasound images. Prospective diagnostic accuracy study. This prospective study included data from 1,751 women with suspected PCOS who presented at two affiliated hospitals at Central South University, with clinical and ultrasound information collected and archived. Patients from center 1 were randomly divided into a training set and an internal validation set in a 7:3 ratio, while patients from center 2 served as the external validation set. Using the YOLOv11 deep learning framework, an automated recognition model for ovarian ultrasound images in PCOS cases was constructed, and its diagnostic performance was evaluated. Ultrasound images from 933 patients (781 from center 1 and 152 from center 2) were analyzed. The mean average precision of the YOLOv11 model in detecting the target ovary was 95.7%, 97.6%, and 97.8% for the training, internal validation, and external validation sets, respectively. For diagnostic classification, the model achieved an F1 score of 95.0% in the training set and 96.9% in both validation sets. The area under the curve values were 0.953, 0.973, and 0.967 for the training, internal validation, and external validation sets respectively. The model also demonstrated significantly faster evaluation of a single ovary compared to clinicians (doctor, 5.0 seconds; model, 0.1 seconds; <i>p</i> < 0.01). The YOLOv11-based automatic recognition model for PCOS ovarian ultrasound images exhibits strong target detection and diagnostic performance. This approach can streamline the follicle counting process in conventional ultrasound and enhance the efficiency and generalizability of ultrasound-based PCOS assessment.

Ultrasound-Based Machine Learning and SHapley Additive exPlanations Method Evaluating Risk of Gallbladder Cancer: A Bicentric and Validation Study.

Chen B, Zhong H, Lin J, Lyu G, Su S

pubmed logopapersAug 9 2025
This study aims to construct and evaluate 8 machine learning models by integrating ultrasound imaging features, clinical characteristics, and serological features to assess the risk of gallbladder cancer (GBC) occurrence in patients. A retrospective analysis was conducted on ultrasound and clinical data of 300 suspected GBC patients who visited the Second Affiliated Hospital of Fujian Medical University from January 2020 to January 2024 and 69 patients who visited the Zhongshan Hospital Affiliated to Xiamen University from January 2024 to January 2025. Key relevant features were selected using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Predictive models were constructed using XGBoost, logistic regression, support vector machine, k-nearest neighbors, random forest, decision tree, naive Bayes, and neural network, with the SHapley Additive exPlanations (SHAP) method employed to explain model interpretability. The LASSO regression demonstrated that gender, age, alkaline phosphatase (ALP), clarity of interface with liver, stratification of the gallbladder wall, intracapsular anechoic lesions, and intracapsular punctiform strong lesions were key features for GBC. The XGBoost model demonstrated an area under receiver operating characteristic curve (AUC) of 0.934, 0.916, and 0.813 in the training, validating, and test sets. SHAP analysis revealed the importance ranking of factors as clarity of interface with liver, stratification of the gallbladder wall, intracapsular anechoic lesions, and intracapsular punctiform strong lesions, ALP, gender, and age. Personalized prediction explanations through SHAP values demonstrated the contribution of each feature to the final prediction, enhancing result interpretability. Furthermore, decision plots were generated to display the influence trajectory of each feature on model predictions, aiding in analyzing which features had the greatest impact on these mispredictions; thereby facilitating further model optimization or feature adjustment. This study proposed a GBC ML model based on ultrasound, clinical, and serological characteristics, indicating the superior performance of the XGBoost model and enhancing the interpretability of the model through the SHAP method.

A Co-Plane Machine Learning Model Based on Ultrasound Radiomics for the Evaluation of Diabetic Peripheral Neuropathy.

Jiang Y, Peng R, Liu X, Xu M, Shen H, Yu Z, Jiang Z

pubmed logopapersAug 8 2025
Detection of diabetic peripheral neuropathy (DPN) is critical for preventing severe complications. Machine learning (ML) and radiomics offer promising approaches for the diagnosis of DPN; however, their application in ultrasound-based detection of DPN remains limited. Moreover, there is no consensus on whether longitudinal or transverse ultrasound planes provide more robust radiomic features for nerve evaluation. This study aimed to analyze and compare radiomic features from different ultrasound planes of the tibial nerve and to develop a co-plane fusion ML model to enhance the diagnostic accuracy of DPN. In our study, a total of 516 feet from 262 diabetics across two institutions was analyzed and stratified into a training cohort (n = 309), an internal testing cohort (n = 133), and an external testing cohort (n = 74). A total of 1316 radiomic features were extracted from both transverse and longitudinal planes of the tibial nerve. After feature selection, six ML algorithms were utilized to construct radiomics models based on transverse, longitudinal, and combined planes. The performance of these models was assessed using receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). Shapley Additive exPlanations (SHAP) were employed to elucidate the key features and their contributions to predictions within the optimal model. The co-plane Support Vector Machine (SVM) model exhibited superior performance, achieving AUC values of 0.90 (95% CI: 0.86-0.93), 0.88 (95% CI: 0.84-0.91), and 0.70 (95% CI: 0.64-0.76) in the training, internal testing, and external testing cohorts, respectively. These results significantly exceeded those of the single-plane models, as determined by the DeLong test (P < 0.05). Calibration curves and DCA curve indicated a good model fit and suggested potential clinical utility. Furthermore, SHAP were employed to explain the model. The co-plane SVM model, which integrates transverse and longitudinal radiomic features of the tibial nerve, demonstrated optimal performance in DPN prediction, thereby significantly enhancing the efficacy of DPN diagnosis. This model may serve as a robust tool for noninvasive assessment of DPN, highlighting its promising applicability in clinical settings.
Page 17 of 56552 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.