Sort by:
Page 164 of 6486473 results

Li X, Caulfield KA, Chen AA, McMahan CS, Hartwell KJ, Brady KT, George MS

pubmed logopapersSep 15 2025
<b><i>Background:</i></b> Combining functional magnetic resonance imaging (fMRI) and machine learning (ML) can be used to identify therapeutic targets and evaluate the effect of repetitive transcranial magnetic stimulation (rTMS) in neural networks in tobacco use disorder. We investigated whether large-scale network connectivity can predict the rTMS effect on smoking cessation. <b><i>Methods:</i></b> Smoking cue exposure task-fMRI (T-fMRI) and resting-state fMRI (Rs-fMRI) scans were acquired before and after the 10 sessions of active or sham rTMS (10 Hz, 3000 pulses per session) over the left dorsal lateral prefrontal cortex in 42 treatment-seeking smokers. Five large-scale networks (default model network, central executive network, dorsal attention network, salience network [SN], and reward network) were compared before and after 10 sessions of rTMS, as well as between active and sham rTMS conditions. We performed neural network and regression analysis on the average connectivity of large-scale networks and the effectiveness of rTMS induced by rTMS. <b><i>Results:</i></b> Regression analyses indicated higher salience connectivity in T-fMRI and lower reward connectivity in Rs-fMRI, predicting a better outcome of TMS treatment for smoking cessation (<i>p</i> < 0.01, Bonferroni corrected). Neural Network analyses suggested that SN was the most important predictor of rTMS effectiveness in both T-fMRI (0.33 of feature importance) and Rs-fMRI (0.37 feature importance). <b><i>Conclusions:</i></b> Both T-fMRI and Rs-fMRI connectivity in SN predict a better outcome of TMS treatment for smoking cessation, but in opposite directions. The work shows that ML models can be used to target TMS treatment. Given the small sample size, all ML findings should be replicated in a larger cohort to ensure their validity.

Nishank Singla, Krisztian Koos, Farzin Haddadpour, Amin Honarmandi Shandiz, Lovish Chum, Xiaojian Xu, Qing Jin, Erhan Bas

arxiv logopreprintSep 15 2025
X-ray imaging is a ubiquitous in radiology, yet most existing AI foundation models are limited to chest anatomy and fail to generalize across broader clinical tasks. In this work, we introduce XR-0, the multi-anatomy X-ray foundation model using self-supervised learning on a large, private dataset of 1.15 million images spanning diverse anatomical regions and evaluated across 12 datasets and 20 downstream tasks, including classification, retrieval, segmentation, localization, visual grounding, and report generation. XR-0 achieves state-of-the-art performance on most multi-anatomy tasks and remains competitive on chest-specific benchmarks. Our results demonstrate that anatomical diversity and supervision are critical for building robust, general-purpose medical vision models, paving the way for scalable and adaptable AI systems in radiology.

Nojod M. Alotaibi, Areej M. Alhothali, Manar S. Ali

arxiv logopreprintSep 15 2025
Major depressive disorder (MDD) is a prevalent mental health condition that negatively impacts both individual well-being and global public health. Automated detection of MDD using structural magnetic resonance imaging (sMRI) and deep learning (DL) methods holds increasing promise for improving diagnostic accuracy and enabling early intervention. Most existing methods employ either voxel-level features or handcrafted regional representations built from predefined brain atlases, limiting their ability to capture complex brain patterns. This paper develops a unified pipeline that utilizes Vision Transformers (ViTs) for extracting 3D region embeddings from sMRI data and Graph Neural Network (GNN) for classification. We explore two strategies for defining regions: (1) an atlas-based approach using predefined structural and functional brain atlases, and (2) an cube-based method by which ViTs are trained directly to identify regions from uniformly extracted 3D patches. Further, cosine similarity graphs are generated to model interregional relationships, and guide GNN-based classification. Extensive experiments were conducted using the REST-meta-MDD dataset to demonstrate the effectiveness of our model. With stratified 10-fold cross-validation, the best model obtained 78.98% accuracy, 76.54% sensitivity, 81.58% specificity, 81.58% precision, and 78.98% F1-score. Further, atlas-based models consistently outperformed the cube-based approach, highlighting the importance of using domain-specific anatomical priors for MDD detection.

Farahdiba Zarin, Nicolas Padoy, Jérémy Dana, Vinkle Srivastav

arxiv logopreprintSep 15 2025
The fine-grained surface reconstruction of different organs from 3D medical imaging can provide advanced diagnostic support and improved surgical planning. However, the representation of the organs is often limited by the resolution, with a detailed higher resolution requiring more memory and computing footprint. Implicit representations of objects have been proposed to alleviate this problem in general computer vision by providing compact and differentiable functions to represent the 3D object shapes. However, architectural and data-related differences prevent the direct application of these methods to medical images. This work introduces ImplMORe, an end-to-end deep learning method using implicit surface representations for multi-organ reconstruction from 3D medical images. ImplMORe incorporates local features using a 3D CNN encoder and performs multi-scale interpolation to learn the features in the continuous domain using occupancy functions. We apply our method for single and multiple organ reconstructions using the totalsegmentator dataset. By leveraging the continuous nature of occupancy functions, our approach outperforms the discrete explicit representation based surface reconstruction approaches, providing fine-grained surface details of the organ at a resolution higher than the given input image. The source code will be made publicly available at: https://github.com/CAMMA-public/ImplMORe

Ang Nan Gu, Michael Tsang, Hooman Vaseli, Purang Abolmaesumi, Teresa Tsang

arxiv logopreprintSep 15 2025
Computer-aided diagnosis systems must make critical decisions from medical images that are often noisy, ambiguous, or conflicting, yet today's models are trained on overly simplistic labels that ignore diagnostic uncertainty. One-hot labels erase inter-rater variability and force models to make overconfident predictions, especially when faced with incomplete or artifact-laden inputs. We address this gap by introducing a novel framework that brings uncertainty back into the label space. Our method leverages neural network training dynamics (NNTD) to assess the inherent difficulty of each training sample. By aggregating and calibrating model predictions during training, we generate uncertainty-aware pseudo-labels that reflect the ambiguity encountered during learning. This label augmentation approach is architecture-agnostic and can be applied to any supervised learning pipeline to enhance uncertainty estimation and robustness. We validate our approach on a challenging echocardiography classification benchmark, demonstrating superior performance over specialized baselines in calibration, selective classification, and multi-view fusion.

Hongyuan Zhang, Yuheng Wu, Mingyang Zhao, Zhiwei Chen, Rebecca Li, Fei Zhu, Haohan Zhao, Xiaohua Yuan, Meng Yang, Chunli Qiu, Xiang Cong, Haiyan Chen, Lina Luan, Randolph H. L. Wong, Huai Liao, Colin A Graham, Shi Chang, Guowei Tao, Dong Yi, Zhen Lei, Nassir Navab, Sebastien Ourselin, Jiebo Luo, Hongbin Liu, Gaofeng Meng

arxiv logopreprintSep 15 2025
Artificial intelligence (AI) that can effectively learn ultrasound representations by integrating multi-source data holds significant promise for advancing clinical care. However, the scarcity of large labeled datasets in real-world clinical environments and the limited generalizability of task-specific models have hindered the development of generalizable clinical AI models for ultrasound applications. In this study, we present EchoCare, a novel ultrasound foundation model for generalist clinical use, developed via self-supervised learning on our curated, publicly available, large-scale dataset EchoCareData. EchoCareData comprises 4.5 million ultrasound images, sourced from over 23 countries across 5 continents and acquired via a diverse range of distinct imaging devices, thus encompassing global cohorts that are multi-center, multi-device, and multi-ethnic. Unlike prior studies that adopt off-the-shelf vision foundation model architectures, we introduce a hierarchical classifier into EchoCare to enable joint learning of pixel-level and representation-level features, capturing both global anatomical contexts and local ultrasound characteristics. With minimal training, EchoCare outperforms state-of-the-art comparison models across 10 representative ultrasound benchmarks of varying diagnostic difficulties, spanning disease diagnosis, lesion segmentation, organ detection, landmark prediction, quantitative regression, imaging enhancement and report generation. The code and pretrained model are publicly released, rendering EchoCare accessible for fine-tuning and local adaptation, supporting extensibility to additional applications. EchoCare provides a fully open and generalizable foundation model to boost the development of AI technologies for diverse clinical ultrasound applications.

Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li

arxiv logopreprintSep 15 2025
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing top 3 places in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.792, HD95 of 93.19 with the held-out test data, with an average inference time of XX (TBC during the ODIN workshop). In Task 2, U-Mamba2 achieved the mean Dice of 0.852 and HD95 of 7.39 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.

Bo Cao, Fan Yu, Mengmeng Feng, SenHao Zhang, Xin Meng, Yue Zhang, Zhen Qian, Jie Lu

arxiv logopreprintSep 15 2025
Multimodal learning has attracted much attention in recent years due to its ability to effectively utilize data features from a variety of different modalities. Diagnosing the vulnerability of atherosclerotic plaques directly from carotid 3D MRI images is relatively challenging for both radiologists and conventional 3D vision networks. In clinical practice, radiologists assess patient conditions using a multimodal approach that incorporates various imaging modalities and domain-specific expertise, paving the way for the creation of multimodal diagnostic networks. In this paper, we have developed an effective strategy to leverage radiologists' domain knowledge to automate the diagnosis of carotid plaque vulnerability through Variation inference and Multimodal knowledge Distillation (VMD). This method excels in harnessing cross-modality prior knowledge from limited image annotations and radiology reports within training data, thereby enhancing the diagnostic network's accuracy for unannotated 3D MRI images. We conducted in-depth experiments on the dataset collected in-house and verified the effectiveness of the VMD strategy we proposed.

Zhaolong Wu, Pu Luo, Jason Pui Yin Cheung, Teng Zhang

arxiv logopreprintSep 15 2025
This study presents the first comprehensive evaluation of Multimodal Large Language Models (MLLMs) for Adolescent Idiopathic Scoliosis (AIS) self-management. We constructed a database of approximately 3,000 anteroposterior X-rays with diagnostic texts and evaluated five MLLMs through a `Divide and Conquer' framework consisting of a visual question-answering task, a domain knowledge assessment task, and a patient education counseling assessment task. Our investigation revealed limitations of MLLMs' ability in interpreting complex spinal radiographs and comprehending AIS care knowledge. To address these, we pioneered enhancing MLLMs with spinal keypoint prompting and compiled an AIS knowledge base for retrieval augmented generation (RAG), respectively. Results showed varying effectiveness of visual prompting across different architectures, while RAG substantially improved models' performances on the knowledge assessment task. Our findings indicate current MLLMs are far from capable in realizing personalized assistant in AIS care. The greatest challenge lies in their abilities to obtain accurate detections of spinal deformity locations (best accuracy: 0.55) and directions (best accuracy: 0.13).

Nathan He, Cody Chen

arxiv logopreprintSep 15 2025
Existing deep learning models for chest radiology often neglect patient metadata, limiting diagnostic accuracy and fairness. To bridge this gap, we introduce MetaCheX, a novel multimodal framework that integrates chest X-ray images with structured patient metadata to replicate clinical decision-making. Our approach combines a convolutional neural network (CNN) backbone with metadata processed by a multilayer perceptron through a shared classifier. Evaluated on the CheXpert Plus dataset, MetaCheX consistently outperformed radiograph-only baseline models across multiple CNN architectures. By integrating metadata, the overall diagnostic accuracy was significantly improved, measured by an increase in AUROC. The results of this study demonstrate that metadata reduces algorithmic bias and enhances model generalizability across diverse patient populations. MetaCheX advances clinical artificial intelligence toward robust, context-aware radiographic disease detection.
Page 164 of 6486473 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.