Sort by:
Page 156 of 1591585 results

[Orthodontics in the CBCT era: 25 years later, what are the guidelines?].

Foucart JM, Papelard N, Bourriau J

pubmed logopapersMay 15 2025
CBCT has become an essential tool in orthodontics, although its use must remain judicious and evidence-based. This study provides an updated analysis of international recommendations concerning the use of CBCT in orthodontics, with a particular focus on clinical indications, radiation dose reduction, and recent technological advancements. A systematic review of guidelines published between 2015 and 2025 was conducted following the PRISMA methodology. Inclusion criteria comprised official directives from recognized scientific societies and clinical studies evaluating low dose protocols in orthodontics. The analysis of the 19 retained recommendations reveals a consensus regarding the primary indications for CBCT in orthodontics, particularly for impacted teeth, skeletal anomalies, periodontal and upper airways assessment. Dose optimization and the integration of artificial intelligence emerge as major advancements, enabling significant radiation reduction while preserving diagnostic accuracy. The development of low dose protocols and advanced reconstruction algorithms presents promising perspectives for safer and more efficient imaging, increasingly replacing conventional 2D radiographic techniques. However, an international harmonization of recommendations for these new imaging sequences is imperative to standardize clinical practices and enhance patient radioprotection.

Privacy-Protecting Image Classification Within the Web Browser Using Deep Learning Models from Zenodo.

Auer F, Mayer S, Kramer F

pubmed logopapersMay 15 2025
Integrating deep learning into clinical workflows for medical image analysis holds promise for improving diagnostic accuracy. However, strict data privacy regulations and the sensitivity of clinical IT infrastructure limit the deployment of cloud-based solutions. This paper introduces WebIPred, a web-based application that loads deep learning models directly within the client's web browser, protecting patient privacy while maintaining compatibility with clinical IT environments. WebIPred supports the application of pre-trained models published on Zenodo and other repositories, allowing clinicians to apply these models to real patient data without the need for extensive technical knowledge. This paper outlines WebIPred's model integration system, prediction workflow, and privacy features. Our results show that WebIPred offers a privacy-protecting and flexible application for image classification, only relying on client-side processing. WebIPred combines its strong commitment to data privacy and security with a user-friendly interface that makes it easy for clinicians to integrate AI into their workflows.

Uncertainty Co-estimator for Improving Semi-Supervised Medical Image Segmentation.

Zeng X, Xiong S, Xu J, Du G, Rong Y

pubmed logopapersMay 15 2025
Recently, combining the strategy of consistency regularization with uncertainty estimation has shown promising performance on semi-supervised medical image segmentation tasks. However, most existing methods estimate the uncertainty solely based on the outputs of a single neural network, which results in imprecise uncertainty estimations and eventually degrades the segmentation performance. In this paper, we propose a novel Uncertainty Co-estimator (UnCo) framework to deal with this problem. Inspired by the co-training technique, UnCo establishes two different mean-teacher modules (i.e., two pairs of teacher and student models), and estimates three types of uncertainty from the multi-source predictions generated by these models. Through combining these uncertainties, their differences will help to filter out incorrect noise in each estimate, thus allowing the final fused uncertainty maps to be more accurate. These resulting maps are then used to enhance a cross-consistency regularization imposed between the two modules. In addition, UnCo also designs an internal consistency regularization within each module, so that the student models can aggregate diverse feature information from both modules, thus promoting the semi-supervised segmentation performance. Finally, an adversarial constraint is introduced to maintain the model diversity. Experimental results on four medical image datasets indicate that UnCo can achieve new state-of-the-art performance on both 2D and 3D semi-supervised segmentation tasks. The source code will be available at https://github.com/z1010x/UnCo.

CLIF-Net: Intersection-guided Cross-view Fusion Network for Infection Detection from Cranial Ultrasound.

Yu M, Peterson MR, Burgoine K, Harbaugh T, Olupot-Olupot P, Gladstone M, Hagmann C, Cowan FM, Weeks A, Morton SU, Mulondo R, Mbabazi-Kabachelor E, Schiff SJ, Monga V

pubmed logopapersMay 15 2025
This paper addresses the problem of detecting possible serious bacterial infection (pSBI) of infancy, i.e. a clinical presentation consistent with bacterial sepsis in newborn infants using cranial ultrasound (cUS) images. The captured image set for each patient enables multiview imagery: coronal and sagittal, with geometric overlap. To exploit this geometric relation, we develop a new learning framework, called the intersection-guided Crossview Local- and Image-level Fusion Network (CLIF-Net). Our technique employs two distinct convolutional neural network branches to extract features from coronal and sagittal images with newly developed multi-level fusion blocks. Specifically, we leverage the spatial position of these images to locate the intersecting region. We then identify and enhance the semantic features from this region across multiple levels using cross-attention modules, facilitating the acquisition of mutually beneficial and more representative features from both views. The final enhanced features from the two views are then integrated and projected through the image-level fusion layer, outputting pSBI and non-pSBI class probabilities. We contend that our method of exploiting multi-view cUS images enables a first of its kind, robust 3D representation tailored for pSBI detection. When evaluated on a dataset of 302 cUS scans from Mbale Regional Referral Hospital in Uganda, CLIF-Net demonstrates substantially enhanced performance, surpassing the prevailing state-of-the-art infection detection techniques.

CheXGenBench: A Unified Benchmark For Fidelity, Privacy and Utility of Synthetic Chest Radiographs

Raman Dutt, Pedro Sanchez, Yongchen Yao, Steven McDonagh, Sotirios A. Tsaftaris, Timothy Hospedales

arxiv logopreprintMay 15 2025
We introduce CheXGenBench, a rigorous and multifaceted evaluation framework for synthetic chest radiograph generation that simultaneously assesses fidelity, privacy risks, and clinical utility across state-of-the-art text-to-image generative models. Despite rapid advancements in generative AI for real-world imagery, medical domain evaluations have been hindered by methodological inconsistencies, outdated architectural comparisons, and disconnected assessment criteria that rarely address the practical clinical value of synthetic samples. CheXGenBench overcomes these limitations through standardised data partitioning and a unified evaluation protocol comprising over 20 quantitative metrics that systematically analyse generation quality, potential privacy vulnerabilities, and downstream clinical applicability across 11 leading text-to-image architectures. Our results reveal critical inefficiencies in the existing evaluation protocols, particularly in assessing generative fidelity, leading to inconsistent and uninformative comparisons. Our framework establishes a standardised benchmark for the medical AI community, enabling objective and reproducible comparisons while facilitating seamless integration of both existing and future generative models. Additionally, we release a high-quality, synthetic dataset, SynthCheX-75K, comprising 75K radiographs generated by the top-performing model (Sana 0.6B) in our benchmark to support further research in this critical domain. Through CheXGenBench, we establish a new state-of-the-art and release our framework, models, and SynthCheX-75K dataset at https://raman1121.github.io/CheXGenBench/

Ordered-subsets Multi-diffusion Model for Sparse-view CT Reconstruction

Pengfei Yu, Bin Huang, Minghui Zhang, Weiwen Wu, Shaoyu Wang, Qiegen Liu

arxiv logopreprintMay 15 2025
Score-based diffusion models have shown significant promise in the field of sparse-view CT reconstruction. However, the projection dataset is large and riddled with redundancy. Consequently, applying the diffusion model to unprocessed data results in lower learning effectiveness and higher learning difficulty, frequently leading to reconstructed images that lack fine details. To address these issues, we propose the ordered-subsets multi-diffusion model (OSMM) for sparse-view CT reconstruction. The OSMM innovatively divides the CT projection data into equal subsets and employs multi-subsets diffusion model (MSDM) to learn from each subset independently. This targeted learning approach reduces complexity and enhances the reconstruction of fine details. Furthermore, the integration of one-whole diffusion model (OWDM) with complete sinogram data acts as a global information constraint, which can reduce the possibility of generating erroneous or inconsistent sinogram information. Moreover, the OSMM's unsupervised learning framework provides strong robustness and generalizability, adapting seamlessly to varying sparsity levels of CT sinograms. This ensures consistent and reliable performance across different clinical scenarios. Experimental results demonstrate that OSMM outperforms traditional diffusion models in terms of image quality and noise resilience, offering a powerful and versatile solution for advanced CT imaging in sparse-view scenarios.

Assessing artificial intelligence in breast screening with stratified results on 306 839 mammograms across geographic regions, age, breast density and ethnicity: A Retrospective Investigation Evaluating Screening (ARIES) study.

Oberije CJG, Currie R, Leaver A, Redman A, Teh W, Sharma N, Fox G, Glocker B, Khara G, Nash J, Ng AY, Kecskemethy PD

pubmed logopapersMay 14 2025
Evaluate an Artificial Intelligence (AI) system in breast screening through stratified results across age, breast density, ethnicity and screening centres, from different UK regions. A large-scale retrospective study evaluating two variations of using AI as an independent second reader in double reading was executed. Stratifications were conducted for clinical and operational metrics. Data from 306 839 mammography cases screened between 2017 and 2021 were used and included three different UK regions.The impact on safety and effectiveness was assessed using clinical metrics: cancer detection rate and positive predictive value, stratified according to age, breast density and ethnicity. Operational impact was assessed through reading workload and recall rate, measured overall and per centre.Non-inferiority was tested for AI workflows compared with human double reading, and when passed, superiority was tested. AI interval cancer (IC) flag rate was assessed to estimate additional cancer detection opportunity with AI that cannot be assessed retrospectively. The AI workflows passed non-inferiority or superiority tests for every metric across all subgroups, with workload savings between 38.3% and 43.7%. The AI standalone flagged 41.2% of ICs overall, ranging between 33.3% and 46.8% across subgroups, with the highest detection rate for dense breasts. Human double reading and AI workflows showed the same performance disparities across subgroups. The AI integrations maintained or improved performance at all metrics for all subgroups while achieving significant workload reduction. Moreover, complementing these integrations with AI as an additional reader can improve cancer detection. The granularity of assessment showed that screening with the AI-system integrations was as safe as standard double reading across heterogeneous populations.

Automated scout-image-based estimation of contrast agent dosing: a deep learning approach

Schirrmeister, R., Taleb, L., Friemel, P., Reisert, M., Bamberg, F., Weiss, J., Rau, A.

medrxiv logopreprintMay 12 2025
We developed and tested a deep-learning-based algorithm for the approximation of contrast agent dosage based on computed tomography (CT) scout images. We prospectively enrolled 817 patients undergoing clinically indicated CT imaging, predominantly of the thorax and/or abdomen. Patient weight was collected by study staff prior to the examination 1) with a weight scale and 2) as self-reported. Based on the scout images, we developed an EfficientNet convolutional neural network pipeline to estimate the optimal contrast agent dose based on patient weight and provide a browser-based user interface as a versatile open-source tool to account for different contrast agent compounds. We additionally analyzed the body-weight-informative CT features by synthesizing representative examples for different weights using in-context learning and dataset distillation. The cohort consisted of 533 thoracic, 70 abdominal and 229 thoracic-abdominal CT scout scans. Self-reported patient weight was statistically significantly lower than manual measurements (75.13 kg vs. 77.06 kg; p < 10-5, Wilcoxon signed-rank test). Our pipeline predicted patient weight with a mean absolute error of 3.90 {+/-} 0.20 kg (corresponding to a roughly 4.48 - 11.70 ml difference in contrast agent depending on the agent) in 5-fold cross-validation and is publicly available at https://tinyurl.com/ct-scout-weight. Interpretability analysis revealed that both larger anatomical shape and higher overall attenuation were predictive of body weight. Our open-source deep learning pipeline allows for the automatic estimation of accurate contrast agent dosing based on scout images in routine CT imaging studies. This approach has the potential to streamline contrast agent dosing workflows, improve efficiency, and enhance patient safety by providing quick and accurate weight estimates without additional measurements or reliance on potentially outdated records. The models performance may vary depending on patient positioning and scout image quality and the approach requires validation on larger patient cohorts and other clinical centers. Author SummaryAutomation of medical workflows using AI has the potential to increase reproducibility while saving costs and time. Here, we investigated automating the estimation of the required contrast agent dosage for CT examinations. We trained a deep neural network to predict the body weight from the initial 2D CT Scout images that are required prior to the actual CT examination. The predicted weight is then converted to a contrast agent dosage based on contrast-agent-specific conversion factors. To facilitate application in clinical routine, we developed a user-friendly browser-based user interface that allows clinicians to select a contrast agent or input a custom conversion factor to receive dosage suggestions, with local data processing in the browser. We also investigate what image characteristics predict body weight and find plausible relationships such as higher attenuation and larger anatomical shapes correlating with higher body weights. Our work goes beyond prior work by implementing a single model for a variety of anatomical regions, providing an accessible user interface and investigating the predictive characteristics of the images.

CirnetamorNet: An ultrasonic temperature measurement network for microwave hyperthermia based on deep learning.

Cui F, Du Y, Qin L, Li B, Li C, Meng X

pubmed logopapersMay 9 2025
Microwave thermotherapy is a promising approach for cancer treatment, but accurate noninvasive temperature monitoring remains challenging. This study aims to achieve accurate temperature prediction during microwave thermotherapy by efficiently integrating multi-feature data, thereby improving the accuracy and reliability of noninvasive thermometry techniques. We proposed an enhanced recurrent neural network architecture, namely CirnetamorNet. The experimental data acquisition system is developed by using the material that simulates the characteristics of human tissue to construct the body model. Ultrasonic image data at different temperatures were collected, and 5 parameters with high temperature correlation were extracted from gray scale covariance matrix and Homodyned-K distribution. Using multi-feature data as input and temperature prediction as output, the CirnetamorNet model is constructed by multi-head attention mechanism. Model performance was evaluated by analyzing training losses, predicting mean square error and accuracy, and ablation experiments were performed to evaluate the contribution of each module. Compared with common models, the CirnetamorNet model performs well, with training losses as low as 1.4589 and mean square error of only 0.1856. Its temperature prediction accuracy of 0.3°C exceeds that of many advanced models. Ablation experiments show that the removal of any key module of the model will lead to performance degradation, which proves that the collaboration of all modules is significant for improving the performance of the model. The proposed CirnetamorNet model exhibits exceptional performance in noninvasive thermometry for microwave thermotherapy. It offers a novel approach to multi-feature data fusion in the medical field and holds significant practical application value.

Prompt Engineering for Large Language Models in Interventional Radiology.

Dietrich N, Bradbury NC, Loh C

pubmed logopapersMay 7 2025
Prompt engineering plays a crucial role in optimizing artificial intelligence (AI) and large language model (LLM) outputs by refining input structure, a key factor in medical applications where precision and reliability are paramount. This Clinical Perspective provides an overview of prompt engineering techniques and their relevance to interventional radiology (IR). It explores key strategies, including zero-shot, one- or few-shot, chain-of-thought, tree-of-thought, self-consistency, and directional stimulus prompting, demonstrating their application in IR-specific contexts. Practical examples illustrate how these techniques can be effectively structured for workplace and clinical use. Additionally, the article discusses best practices for designing effective prompts and addresses challenges in the clinical use of generative AI, including data privacy and regulatory concerns. It concludes with an outlook on the future of generative AI in IR, highlighting advances including retrieval-augmented generation, domain-specific LLMs, and multimodal models.
Page 156 of 1591585 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.