Sort by:
Page 153 of 1591585 results

Large medical image database impact on generalizability of synthetic CT scan generation.

Boily C, Mazellier JP, Meyer P

pubmed logopapersMay 21 2025
This study systematically examines the impact of training database size and the generalizability of deep learning models for synthetic medical image generation. Specifically, we employ a Cycle-Consistency Generative Adversarial Network (CycleGAN) with softly paired data to synthesize kilovoltage computed tomography (kVCT) images from megavoltage computed tomography (MVCT) scans. Unlike previous works, which were constrained by limited data availability, our study uses an extensive database comprising 4,000 patient CT scans, an order of magnitude larger than prior research, allowing for a more rigorous assessment of database size in medical image translation. We quantitatively evaluate the fidelity of the generated synthetic images using established image similarity metrics, including Mean Absolute Error (MAE) and Structural Similarity Index Measure (SSIM). Beyond assessing image quality, we investigate the model's capacity for generalization by analyzing its performance across diverse patient subgroups, considering factors such as sex, age, and anatomical region. This approach enables a more granular understanding of how dataset composition influences model robustness.

Deep learning radiopathomics based on pretreatment MRI and whole slide images for predicting over survival in locally advanced nasopharyngeal carcinoma.

Yi X, Yu X, Li C, Li J, Cao H, Lu Q, Li J, Hou J

pubmed logopapersMay 21 2025
To develop an integrative radiopathomic model based on deep learning to predict overall survival (OS) in locally advanced nasopharyngeal carcinoma (LANPC) patients. A cohort of 343 LANPC patients with pretreatment MRI and whole slide image (WSI) were randomly divided into training (n = 202), validation (n = 91), and external test (n = 50) sets. For WSIs, a self-attention mechanism was employed to assess the significance of different patches for the prognostic task, aggregating them into a WSI-level representation. For MRI, a multilayer perceptron was used to encode the extracted radiomic features, resulting in an MRI-level representation. These were combined in a multimodal fusion model to produce prognostic predictions. Model performances were evaluated using the concordance index (C-index), and Kaplan-Meier curves were employed for risk stratification. To enhance model interpretability, attention-based and Integrated Gradients techniques were applied to explain how WSIs and MRI features contribute to prognosis predictions. The radiopathomics model achieved high predictive accuracy in predicting the OS, with a C-index of 0.755 (95 % CI: 0.673-0.838) and 0.744 (95 % CI: 0.623-0.808) in the training and validation sets, respectively, outperforming single-modality models (radiomic signature: 0.636, 95 % CI: 0.584-0.688; deep pathomic signature: 0.736, 95 % CI: 0.684-0.810). In the external test, similar findings were observed for the predictive performance of the radiopathomics, radiomic signature, and deep pathomic signature, with their C-indices being 0.735, 0.626, and 0.660 respectively. The radiopathomics model effectively stratified patients into high- and low-risk groups (P < 0.001). Additionally, attention heatmaps revealed that high-attention regions corresponded with tumor areas in both risk groups. n: The radiopathomics model holds promise for predicting clinical outcomes in LANPC patients, offering a potential tool for improving clinical decision-making.

Update on the detection of frailty in older adults: a multicenter cohort machine learning-based study protocol.

Fernández-Carnero S, Martínez-Pozas O, Pecos-Martín D, Pardo-Gómez A, Cuenca-Zaldívar JN, Sánchez-Romero EA

pubmed logopapersMay 21 2025
This study aims to investigate the relationship between muscle activation variables assessed via ultrasound and the comprehensive assessment of geriatric patients, as well as to analyze ultrasound images to determine their correlation with morbimortality factors in frail patients. The present cohort study will be conducted in 500 older adults diagnosed with frailty. A multicenter study will be conducted among the day care centers and nursing homes. This will be achieved through the evaluation of frail older adults via instrumental and functional tests, along with specific ultrasound images to study sarcopenia and nutrition, followed by a detailed analysis of the correlation between all collected variables. This study aims to investigate the correlation between ultrasound-assessed muscle activation variables and the overall health of geriatric patients. It addresses the limitations of previous research by including a large sample size of 500 patients and measuring various muscle parameters beyond thickness. Additionally, it aims to analyze ultrasound images to identify markers associated with higher risk of complications in frail patients. The study involves frail older adults undergoing functional tests and specific ultrasound examinations. A comprehensive analysis of functional, ultrasound, and nutritional variables will be conducted to understand their correlation with overall health and risk of complications in frail older patients. The study was approved by the Research Ethics Committee of the Hospital Universitario Puerta de Hierro, Madrid, Spain (Act nº 18/2023). In addition, the study was registered with https://clinicaltrials.gov/ (NCT06218121).

Performance of multimodal prediction models for intracerebral hemorrhage outcomes using real-world data.

Matsumoto K, Suzuki M, Ishihara K, Tokunaga K, Matsuda K, Chen J, Yamashiro S, Soejima H, Nakashima N, Kamouchi M

pubmed logopapersMay 21 2025
We aimed to develop and validate multimodal models integrating computed tomography (CT) images, text and tabular clinical data to predict poor functional outcomes and in-hospital mortality in patients with intracerebral hemorrhage (ICH). These models were designed to assist non-specialists in emergency settings with limited access to stroke specialists. A retrospective analysis of 527 patients with ICH admitted to a Japanese tertiary hospital between April 2019 and February 2022 was conducted. Deep learning techniques were used to extract features from three-dimensional CT images and unstructured data, which were then combined with tabular data to develop an L1-regularized logistic regression model to predict poor functional outcomes (modified Rankin scale score 3-6) and in-hospital mortality. The model's performance was evaluated by assessing discrimination metrics, calibration plots, and decision curve analysis (DCA) using temporal validation data. The multimodal model utilizing both imaging and text data, such as medical interviews, exhibited the highest performance in predicting poor functional outcomes. In contrast, the model that combined imaging with tabular data, including physiological and laboratory results, demonstrated the best predictive performance for in-hospital mortality. These models exhibited high discriminative performance, with areas under the receiver operating curve (AUROCs) of 0.86 (95% CI: 0.79-0.92) and 0.91 (95% CI: 0.84-0.96) for poor functional outcomes and in-hospital mortality, respectively. Calibration was satisfactory for predicting poor functional outcomes, but requires refinement for mortality prediction. The models performed similar to or better than conventional risk scores, and DCA curves supported their clinical utility. Multimodal prediction models have the potential to aid non-specialists in making informed decisions regarding ICH cases in emergency departments as part of clinical decision support systems. Enhancing real-world data infrastructure and improving model calibration are essential for successful implementation in clinical practice.

X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography

Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan

arxiv logopreprintMay 21 2025
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture and inflexible volume representation. In this work, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT volumes from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode sparse-view X-ray inputs, where tokens from different views are integrated efficiently. Then, these tokens are decoded into a novel volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. This combination of a high-capacity model and flexible volume representation, empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Our codes are available at: https://github.com/CUHK-AIM-Group/X-GRM.

Cardiac Magnetic Resonance Imaging in the German National Cohort: Automated Segmentation of Short-Axis Cine Images and Post-Processing Quality Control

Full, P. M., Schirrmeister, R. T., Hein, M., Russe, M. F., Reisert, M., Ammann, C., Greiser, K. H., Niendorf, T., Pischon, T., Schulz-Menger, J., Maier-Hein, K. H., Bamberg, F., Rospleszcz, S., Schlett, C. L., Schuppert, C.

medrxiv logopreprintMay 21 2025
PurposeTo develop a segmentation and quality control pipeline for short-axis cardiac magnetic resonance (CMR) cine images from the prospective, multi-center German National Cohort (NAKO). Materials and MethodsA deep learning model for semantic segmentation, based on the nnU-Net architecture, was applied to full-cycle short-axis cine images from 29,908 baseline participants. The primary objective was to determine data on structure and function for both ventricles (LV, RV), including end diastolic volumes (EDV), end systolic volumes (ESV), and LV myocardial mass. Quality control measures included a visual assessment of outliers in morphofunctional parameters, inter- and intra-ventricular phase differences, and LV time-volume curves (TVC). These were adjudicated using a five-point rating scale, ranging from five (excellent) to one (non-diagnostic), with ratings of three or lower subject to exclusion. The predictive value of outlier criteria for inclusion and exclusion was analyzed using receiver operating characteristics. ResultsThe segmentation model generated complete data for 29,609 participants (incomplete in 1.0%) and 5,082 cases (17.0 %) were visually assessed. Quality assurance yielded a sample of 26,899 participants with excellent or good quality (89.9%; exclusion of 1,875 participants due to image quality issues and 835 cases due to segmentation quality issues). TVC was the strongest single discriminator between included and excluded participants (AUC: 0.684). Of the two-category combinations, the pairing of TVC and phases provided the greatest improvement over TVC alone (AUC difference: 0.044; p<0.001). The best performance was observed when all three categories were combined (AUC: 0.748). Extending the quality-controlled sample to include acceptable quality ratings, a total of 28,413 (95.0%) participants were available. ConclusionThe implemented pipeline facilitated the automated segmentation of an extensive CMR dataset, integrating quality control measures. This methodology ensures that ensuing quantitative analyses are conducted with a diminished risk of bias.

CT-guided CBCT Multi-Organ Segmentation Using a Multi-Channel Conditional Consistency Diffusion Model for Lung Cancer Radiotherapy.

Chen X, Qiu RLJ, Pan S, Shelton J, Yang X, Kesarwala AH

pubmed logopapersMay 20 2025
In cone beam computed tomography(CBCT)-guided adaptive radiotherapy, rapid and precise segmentation of organs-at-risk(OARs)is essential for accurate dose verification and online replanning. The quality of CBCT images obtained with current onboard CBCT imagers and clinical imaging protocols, however, is often compromised by artifacts such as scatter and motion, particularly for thoracic CBCTs. These artifacts not only degrade image contrast but also obscure anatomical boundaries, making accurate segmentation on CBCT images significantly more challenging compared to planning CT images. To address these persistent challenges, we propose a novel multi-channel conditional consistency diffusion model(MCCDM)for segmentation of OARs in thoracic CBCT images (CBCT-MCCDM), which harnesses its domain transfer capabilities to improve segmentation accuracy across different imaging modalities. By jointly training the MCCDM with CT images and their corresponding masks, our framework enables an end-to-end mapping learning process that generates accurate segmentation of OARs.&#xD;This CBCT-MCCDM was used to delineate esophagus, heart, the left and right lungs, and spinal cord on CBCT images from each patient with lung cancer. We quantitatively evaluated our approach by comparing model-generated contours with ground truth contours from 33 patients with lung cancer treated with 5-fraction stereotactic body radiation therapy (SBRT), demonstrating its potential to enhance segmentation accuracy despite the presence of challenging CBCT artifacts. The proposed method was evaluated using average Dice similarity coefficients (DSC), sensitivity, specificity, 95th Percentile Hausdorff Distance (HD95), and mean surface distance (MSD) for each of the five OARs. The method achieved average DSC values of 0.82, 0.88, 0.95, 0.96, and 0.96 for the esophagus, heart, left lung, right lung, and spinal cord, respectively. Sensitivity values were 0.813, 0.922, 0.956, 0.958, and 0.929, respectively, while specificity values were 0.991, 0.994, 0.996, 0.996, and 0.995, respectively. We compared the proposed method with two state-of-art methods, CBCT-only method and U-Net, and demonstrated that the proposed CBCT-MCCDM.

Expert-guided StyleGAN2 image generation elevates AI diagnostic accuracy for maxillary sinus lesions.

Zeng P, Song R, Chen S, Li X, Li H, Chen Y, Gong Z, Cai G, Lin Y, Shi M, Huang K, Chen Z

pubmed logopapersMay 20 2025
The progress of artificial intelligence (AI) research in dental medicine is hindered by data acquisition challenges and imbalanced distributions. These problems are especially apparent when planning to develop AI-based diagnostic or analytic tools for various lesions, such as maxillary sinus lesions (MSL) including mucosal thickening and polypoid lesions. Traditional unsupervised generative models struggle to simultaneously control the image realism, diversity, and lesion-type specificity. This study establishes an expert-guided framework to overcome these limitations to elevate AI-based diagnostic accuracy. A StyleGAN2 framework was developed for generating clinically relevant MSL images (such as mucosal thickening and polypoid lesion) under expert control. The generated images were then integrated into training datasets to evaluate their effect on ResNet50's diagnostic performance. Here we show: 1) Both lesion subtypes achieve satisfactory fidelity metrics, with structural similarity indices (SSIM > 0.996) and maximum mean discrepancy values (MMD < 0.032), and clinical validation scores close to those of real images; 2) Integrating baseline datasets with synthetic images significantly enhances diagnostic accuracy for both internal and external test sets, particularly improving area under the precision-recall curve (AUPRC) by approximately 8% and 14% for mucosal thickening and polypoid lesions in the internal test set, respectively. The StyleGAN2-based image generation tool effectively addressed data scarcity and imbalance through high-quality MSL image synthesis, consequently boosting diagnostic model performance. This work not only facilitates AI-assisted preoperative assessment for maxillary sinus lift procedures but also establishes a methodological framework for overcoming data limitations in medical image analysis.

A multi-modal model integrating MRI habitat and clinicopathology to predict platinum sensitivity in patients with high-grade serous ovarian cancer: a diagnostic study.

Bi Q, Ai C, Meng Q, Wang Q, Li H, Zhou A, Shi W, Lei Y, Wu Y, Song Y, Xiao Z, Li H, Qiang J

pubmed logopapersMay 20 2025
Platinum resistance of high-grade serous ovarian cancer (HGSOC) cannot currently be recognized by specific molecular biomarkers. We aimed to compare the predictive capacity of various models integrating MRI habitat, whole slide images (WSIs), and clinical parameters to predict platinum sensitivity in HGSOC patients. A retrospective study involving 998 eligible patients from four hospitals was conducted. MRI habitats were clustered using K-means algorithm on multi-parametric MRI. Following feature extraction and selection, a Habitat model was developed. Vision Transformer (ViT) and multi-instance learning were trained to derive the patch-level prediction and WSI-level prediction on hematoxylin and eosin (H&E)-stained WSIs, respectively, forming a Pathology model. Logistic regression (LR) was used to create a Clinic model. A multi-modal model integrating Clinic, Habitat, and Pathology (CHP) was constructed using Multi-Head Attention (MHA) and compared with the unimodal models and Ensemble multi-modal models. The area under the curve (AUC) and integrated discrimination improvement (IDI) value were used to assess model performance and gains. In the internal validation cohort and the external test cohort, the Habitat model showed the highest AUCs (0.722 and 0.685) compared to the Clinic model (0.683 and 0.681) and the Pathology model (0.533 and 0.565), respectively. The AUCs (0.789 and 0.807) of the multi-modal model interating CHP based on MHA were highest than those of any unimodal models and Ensemble multi-modal models, with positive IDI values. MRI-based habitat imaging showed potentials to predict platinum sensitivity in HGSOC patients. Multi-modal integration of CHP based on MHA was helpful to improve prediction performance.

Dynadiff: Single-stage Decoding of Images from Continuously Evolving fMRI

Marlène Careil, Yohann Benchetrit, Jean-Rémi King

arxiv logopreprintMay 20 2025
Brain-to-image decoding has been recently propelled by the progress in generative AI models and the availability of large ultra-high field functional Magnetic Resonance Imaging (fMRI). However, current approaches depend on complicated multi-stage pipelines and preprocessing steps that typically collapse the temporal dimension of brain recordings, thereby limiting time-resolved brain decoders. Here, we introduce Dynadiff (Dynamic Neural Activity Diffusion for Image Reconstruction), a new single-stage diffusion model designed for reconstructing images from dynamically evolving fMRI recordings. Our approach offers three main contributions. First, Dynadiff simplifies training as compared to existing approaches. Second, our model outperforms state-of-the-art models on time-resolved fMRI signals, especially on high-level semantic image reconstruction metrics, while remaining competitive on preprocessed fMRI data that collapse time. Third, this approach allows a precise characterization of the evolution of image representations in brain activity. Overall, this work lays the foundation for time-resolved brain-to-image decoding.
Page 153 of 1591585 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.