CT-guided CBCT Multi-Organ Segmentation Using a Multi-Channel Conditional Consistency Diffusion Model for Lung Cancer Radiotherapy.

Authors

Chen X,Qiu RLJ,Pan S,Shelton J,Yang X,Kesarwala AH

Affiliations (4)

  • Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30332, Atlanta, Georgia, 30322, UNITED STATES.
  • Department of Radiology, Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30332, Atlanta, Georgia, 30322, UNITED STATES.
  • Department of Radiology Oncology, Emory University School of Medicine, Atlanta, GA, 30332, Atlanta, Georgia, 30322, UNITED STATES.
  • Department of Radiology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30332, Atlanta, Georgia, 30322, UNITED STATES.

Abstract

In cone beam computed tomography(CBCT)-guided adaptive radiotherapy, rapid and precise segmentation of organs-at-risk(OARs)is essential for accurate dose verification and online replanning. The quality of CBCT images obtained with current onboard CBCT imagers and clinical imaging protocols, however, is often compromised by artifacts such as scatter and motion, particularly for thoracic CBCTs. These artifacts not only degrade image contrast but also obscure anatomical boundaries, making accurate segmentation on CBCT images significantly more challenging compared to planning CT images. To address these persistent challenges, we propose a novel multi-channel conditional consistency diffusion model(MCCDM)for segmentation of OARs in thoracic CBCT images (CBCT-MCCDM), which harnesses its domain transfer capabilities to improve segmentation accuracy across different imaging modalities. By jointly training the MCCDM with CT images and their corresponding masks, our framework enables an end-to-end mapping learning process that generates accurate segmentation of OARs.
This CBCT-MCCDM was used to delineate esophagus, heart, the left and right lungs, and spinal cord on CBCT images from each patient with lung cancer. We quantitatively evaluated our approach by comparing model-generated contours with ground truth contours from 33 patients with lung cancer treated with 5-fraction stereotactic body radiation therapy (SBRT), demonstrating its potential to enhance segmentation accuracy despite the presence of challenging CBCT artifacts. The proposed method was evaluated using average Dice similarity coefficients (DSC), sensitivity, specificity, 95th Percentile Hausdorff Distance (HD95), and mean surface distance (MSD) for each of the five OARs. The method achieved average DSC values of 0.82, 0.88, 0.95, 0.96, and 0.96 for the esophagus, heart, left lung, right lung, and spinal cord, respectively. Sensitivity values were 0.813, 0.922, 0.956, 0.958, and 0.929, respectively, while specificity values were 0.991, 0.994, 0.996, 0.996, and 0.995, respectively. We compared the proposed method with two state-of-art methods, CBCT-only method and U-Net, and demonstrated that the proposed CBCT-MCCDM.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.