Sort by:
Page 131 of 1621612 results

Internal Target Volume Estimation for Liver Cancer Radiation Therapy Using an Ultra Quality 4-Dimensional Magnetic Resonance Imaging.

Liao YP, Xiao H, Wang P, Li T, Aguilera TA, Visak JD, Godley AR, Zhang Y, Cai J, Deng J

pubmed logopapersJun 1 2025
Accurate internal target volume (ITV) estimation is essential for effective and safe radiation therapy in liver cancer. This study evaluates the clinical value of an ultraquality 4-dimensional magnetic resonance imaging (UQ 4D-MRI) technique for ITV estimation. The UQ 4D-MRI technique maps motion information from a low spatial resolution dynamic volumetric MRI onto a high-resolution 3-dimensional MRI used for radiation treatment planning. It was validated using a motion phantom and data from 13 patients with liver cancer. ITV generated from UQ 4D-MRI (ITV<sub>4D</sub>) was compared with those obtained through isotropic expansions (ITV<sub>2 mm</sub> and ITV<sub>5 mm</sub>) and those measured using conventional 4D-computed tomography (computed tomography-based ITV, ITV<sub>CT</sub>) for each patient. Phantom studies showed a displacement measurement difference of <5% between UQ 4D-MRI and single-slice 2-dimensional cine MRI. In patient studies, the maximum superior-inferior displacements of the tumor on UQ 4D-MRI showed no significant difference compared with single-slice 2-dimensional cine imaging (<i>P</i> = .985). Computed tomography-based ITV showed no significant difference (<i>P</i> = .72) with ITV<sub>4D</sub>, whereas ITV<sub>2 mm</sub> and ITV<sub>5 mm</sub> significantly overestimated the volume by 29.0% (<i>P</i> = .002) and 120.7% (<i>P</i> < .001) compared with ITV<sub>4D</sub>, respectively. UQ 4D-MRI enables accurate motion assessment for liver tumors, facilitating precise ITV delineation for radiation treatment planning. Despite uncertainties from artificial intelligence-based delineation and variations in patients' respiratory patterns, UQ 4D-MRI excels at capturing tumor motion trajectories, potentially improving treatment planning accuracy and reducing margins in liver cancer radiation therapy.

Cross-site Validation of AI Segmentation and Harmonization in Breast MRI.

Huang Y, Leotta NJ, Hirsch L, Gullo RL, Hughes M, Reiner J, Saphier NB, Myers KS, Panigrahi B, Ambinder E, Di Carlo P, Grimm LJ, Lowell D, Yoon S, Ghate SV, Parra LC, Sutton EJ

pubmed logopapersJun 1 2025
This work aims to perform a cross-site validation of automated segmentation for breast cancers in MRI and to compare the performance to radiologists. A three-dimensional (3D) U-Net was trained to segment cancers in dynamic contrast-enhanced axial MRIs using a large dataset from Site 1 (n = 15,266; 449 malignant and 14,817 benign). Performance was validated on site-specific test data from this and two additional sites, and common publicly available testing data. Four radiologists from each of the three clinical sites provided two-dimensional (2D) segmentations as ground truth. Segmentation performance did not differ between the network and radiologists on the test data from Sites 1 and 2 or the common public data (median Dice score Site 1, network 0.86 vs. radiologist 0.85, n = 114; Site 2, 0.91 vs. 0.91, n = 50; common: 0.93 vs. 0.90). For Site 3, an affine input layer was fine-tuned using segmentation labels, resulting in comparable performance between the network and radiologist (0.88 vs. 0.89, n = 42). Radiologist performance differed on the common test data, and the network numerically outperformed 11 of the 12 radiologists (median Dice: 0.85-0.94, n = 20). In conclusion, a deep network with a novel supervised harmonization technique matches radiologists' performance in MRI tumor segmentation across clinical sites. We make code and weights publicly available to promote reproducible AI in radiology.

Deep Learning Classification of Ischemic Stroke Territory on Diffusion-Weighted MRI: Added Value of Augmenting the Input with Image Transformations.

Koska IO, Selver A, Gelal F, Uluc ME, Çetinoğlu YK, Yurttutan N, Serindere M, Dicle O

pubmed logopapersJun 1 2025
Our primary aim with this study was to build a patient-level classifier for stroke territory in DWI using AI to facilitate fast triage of stroke to a dedicated stroke center. A retrospective collection of DWI images of 271 and 122 consecutive acute ischemic stroke patients from two centers was carried out. Pretrained MobileNetV2 and EfficientNetB0 architectures were used to classify territorial subtypes as middle cerebral artery, posterior circulation, or watershed infarcts along with normal slices. Various input combinations using edge maps, thresholding, and hard attention versions were explored. The effect of augmenting the three-channel inputs of pre-trained models on classification performance was analyzed. ROC analyses and confusion matrix-derived performance metrics of the models were reported. Of the 271 patients included in this study, 151 (55.7%) were male and 120 (44.3%) were female. One hundred twenty-nine patients had MCA (47.6%), 65 patients had posterior circulation (24%), and 77 patients had watershed (28.0%) infarcts for center 1. Of the 122 patients from center 2, 78 (64%) were male and 44 (34%) were female. Fifty-two patients (43%) had MCA, 51 patients had posterior circulation (42%), and 19 (15%) patients had watershed infarcts. The Mobile-Crop model had the best performance with 0.95 accuracy and a 0.91 mean f1 score for slice-wise classification and 0.88 accuracy on external test sets, along with a 0.92 mean AUC. In conclusion, modified pre-trained models may be augmented with the transformation of images to provide a more accurate classification of affected territory by stroke in DWI.

MR Image Fusion-Based Parotid Gland Tumor Detection.

Sunnetci KM, Kaba E, Celiker FB, Alkan A

pubmed logopapersJun 1 2025
The differentiation of benign and malignant parotid gland tumors is of major significance as it directly affects the treatment process. In addition, it is also a vital task in terms of early and accurate diagnosis of parotid gland tumors and the determination of treatment planning accordingly. As in other diseases, the differentiation of tumor types involves several challenging, time-consuming, and laborious processes. In the study, Magnetic Resonance (MR) images of 114 patients with parotid gland tumors are used for training and testing purposes by Image Fusion (IF). After the Apparent Diffusion Coefficient (ADC), Contrast-enhanced T1-w (T1C-w), and T2-w sequences are cropped, IF (ADC, T1C-w), IF (ADC, T2-w), IF (T1C-w, T2-w), and IF (ADC, T1C-w, T2-w) datasets are obtained for different combinations of these sequences using a two-dimensional Discrete Wavelet Transform (DWT)-based fusion technique. For each of these four datasets, ResNet18, GoogLeNet, and DenseNet-201 architectures are trained separately, and thus, 12 models are obtained in the study. A Graphical User Interface (GUI) application that contains the most successful of these trained architectures for each data is also designed to support the users. The designed GUI application not only allows the fusing of different sequence images but also predicts whether the label of the fused image is benign or malignant. The results show that the DenseNet-201 models for IF (ADC, T1C-w), IF (ADC, T2-w), and IF (ADC, T1C-w, T2-w) are better than the others, with accuracies of 95.45%, 95.96%, and 92.93%, respectively. It is also noted in the study that the most successful model for IF (T1C-w, T2-w) is ResNet18, and its accuracy is equal to 94.95%.

Deep Learning Approaches for Brain Tumor Detection and Classification Using MRI Images (2020 to 2024): A Systematic Review.

Bouhafra S, El Bahi H

pubmed logopapersJun 1 2025
Brain tumor is a type of disease caused by uncontrolled cell proliferation in the brain leading to serious health issues such as memory loss and motor impairment. Therefore, early diagnosis of brain tumors plays a crucial role to extend the survival of patients. However, given the busy nature of the work of radiologists and aiming to reduce the likelihood of false diagnoses, advancing technologies including computer-aided diagnosis and artificial intelligence have shown an important role in assisting radiologists. In recent years, a number of deep learning-based methods have been applied for brain tumor detection and classification using MRI images and achieved promising results. The main objective of this paper is to present a detailed review of the previous researches in this field. In addition, This work summarizes the existing limitations and significant highlights. The study systematically reviews 60 articles researches published between 2020 and January 2024, extensively covering methods such as transfer learning, autoencoders, transformers, and attention mechanisms. The key findings formulated in this paper provide an analytic comparison and future directions. The review aims to provide a comprehensive understanding of automatic techniques that may be useful for professionals and academic communities working on brain tumor classification and detection.

Leveraging Ensemble Models and Follow-up Data for Accurate Prediction of mRS Scores from Radiomic Features of DSC-PWI Images.

Yassin MM, Zaman A, Lu J, Yang H, Cao A, Hassan H, Han T, Miao X, Shi Y, Guo Y, Luo Y, Kang Y

pubmed logopapersJun 1 2025
Predicting long-term clinical outcomes based on the early DSC PWI MRI scan is valuable for prognostication, resource management, clinical trials, and patient expectations. Current methods require subjective decisions about which imaging features to assess and may require time-consuming postprocessing. This study's goal was to predict multilabel 90-day modified Rankin Scale (mRS) score in acute ischemic stroke patients by combining ensemble models and different configurations of radiomic features generated from Dynamic susceptibility contrast perfusion-weighted imaging. In Follow-up studies, a total of 70 acute ischemic stroke (AIS) patients underwent magnetic resonance imaging within 24 hours poststroke and had a follow-up scan. In the single study, 150 DSC PWI Image scans for AIS patients. The DRF are extracted from DSC-PWI Scans. Then Lasso algorithm is applied for feature selection, then new features are generated from initial and follow-up scans. Then we applied different ensemble models to classify between three classes normal outcome (0, 1 mRS score), moderate outcome (2,3,4 mRS score), and severe outcome (5,6 mRS score). ANOVA and post-hoc Tukey HSD tests confirmed significant differences in model style performance across various studies and classification techniques. Stacking models consistently on average outperformed others, achieving an Accuracy of 0.68 ± 0.15, Precision of 0.68 ± 0.17, Recall of 0.65 ± 0.14, and F1 score of 0.63 ± 0.15 in the follow-up time study. Techniques like Bo_Smote showed significantly higher recall and F1 scores, highlighting their robustness and effectiveness in handling imbalanced data. Ensemble models, particularly Bagging and Stacking, demonstrated superior performance, achieving nearly 0.93 in Accuracy, 0.95 in Precision, 0.94 in Recall, and 0.94 in F1 metrics in follow-up conditions, significantly outperforming single models. Ensemble models based on radiomics generated from combining Initial and follow-up scans can be used to predict multilabel 90-day stroke outcomes with reduced subjectivity and user burden.

Using Machine Learning on MRI Radiomics to Diagnose Parotid Tumours Before Comparing Performance with Radiologists: A Pilot Study.

Ammari S, Quillent A, Elvira V, Bidault F, Garcia GCTE, Hartl DM, Balleyguier C, Lassau N, Chouzenoux É

pubmed logopapersJun 1 2025
The parotid glands are the largest of the major salivary glands. They can harbour both benign and malignant tumours. Preoperative work-up relies on MR images and fine needle aspiration biopsy, but these diagnostic tools have low sensitivity and specificity, often leading to surgery for diagnostic purposes. The aim of this paper is (1) to develop a machine learning algorithm based on MR images characteristics to automatically classify parotid gland tumours and (2) compare its results with the diagnoses of junior and senior radiologists in order to evaluate its utility in routine practice. While automatic algorithms applied to parotid tumours classification have been developed in the past, we believe that our study is one of the first to leverage four different MRI sequences and propose a comparison with clinicians. In this study, we leverage data coming from a cohort of 134 patients treated for benign or malignant parotid tumours. Using radiomics extracted from the MR images of the gland, we train a random forest and a logistic regression to predict the corresponding histopathological subtypes. On the test set, the best results are given by the random forest: we obtain a 0.720 accuracy, a 0.860 specificity, and a 0.720 sensitivity over all histopathological subtypes, with an average AUC of 0.838. When considering the discrimination between benign and malignant tumours, the algorithm results in a 0.760 accuracy and a 0.769 AUC, both on test set. Moreover, the clinical experiment shows that our model helps to improve diagnostic abilities of junior radiologists as their sensitivity and accuracy raised by 6 % when using our proposed method. This algorithm may be useful for training of physicians. Radiomics with a machine learning algorithm may help improve discrimination between benign and malignant parotid tumours, decreasing the need for diagnostic surgery. Further studies are warranted to validate our algorithm for routine use.

SDS-Net: A Synchronized Dual-Stage Network for Predicting Patients Within 4.5-h Thrombolytic Treatment Window Using MRI.

Zhang X, Luan Y, Cui Y, Zhang Y, Lu C, Zhou Y, Zhang Y, Li H, Ju S, Tang T

pubmed logopapersJun 1 2025
Timely and precise identification of acute ischemic stroke (AIS) within 4.5 h is imperative for effective treatment decision-making. This study aims to construct a novel network that utilizes limited datasets to recognize AIS patients within this critical window. We conducted a retrospective analysis of 265 AIS patients who underwent both fluid attenuation inversion recovery (FLAIR) and diffusion-weighted imaging (DWI) within 24 h of symptom onset. Patients were categorized based on the time since stroke onset (TSS) into two groups: TSS ≤ 4.5 h and TSS > 4.5 h. The TSS was calculated as the time from stroke onset to MRI completion. We proposed a synchronized dual-stage network (SDS-Net) and a sequential dual-stage network (Dual-stage Net), which were comprised of infarct voxel identification and TSS classification stages. The models were trained on 181 patients and validated on an independent external cohort of 84 patients using metrics of area under the curve (AUC), sensitivity, specificity, and accuracy. A DeLong test was used to statistically compare the performance of the two models. SDS-Net achieved an accuracy of 0.844 with an AUC of 0.914 in the validation dataset, outperforming the Dual-stage Net, which had an accuracy of 0.822 and an AUC of 0.846. In the external test dataset, SDS-Net further demonstrated superior performance with an accuracy of 0.800 and an AUC of 0.879, compared to the accuracy of 0.694 and AUC of 0.744 of Dual-stage Net (P = 0.049). SDS-Net is a robust and reliable tool for identifying AIS patients within a 4.5-h treatment window using MRI. This model can assist clinicians in making timely treatment decisions, potentially improving patient outcomes.

Decoding Glioblastoma Heterogeneity: Neuroimaging Meets Machine Learning.

Fares J, Wan Y, Mayrand R, Li Y, Mair R, Price SJ

pubmed logopapersJun 1 2025
Recent advancements in neuroimaging and machine learning have significantly improved our ability to diagnose and categorize isocitrate dehydrogenase (IDH)-wildtype glioblastoma, a disease characterized by notable tumoral heterogeneity, which is crucial for effective treatment. Neuroimaging techniques, such as diffusion tensor imaging and magnetic resonance radiomics, provide noninvasive insights into tumor infiltration patterns and metabolic profiles, aiding in accurate diagnosis and prognostication. Machine learning algorithms further enhance glioblastoma characterization by identifying distinct imaging patterns and features, facilitating precise diagnoses and treatment planning. Integration of these technologies allows for the development of image-based biomarkers, potentially reducing the need for invasive biopsy procedures and enabling personalized therapy targeting specific pro-tumoral signaling pathways and resistance mechanisms. Although significant progress has been made, ongoing innovation is essential to address remaining challenges and further improve these methodologies. Future directions should focus on refining machine learning models, integrating emerging imaging techniques, and elucidating the complex interplay between imaging features and underlying molecular processes. This review highlights the pivotal role of neuroimaging and machine learning in glioblastoma research, offering invaluable noninvasive tools for diagnosis, prognosis prediction, and treatment planning, ultimately improving patient outcomes. These advances in the field promise to usher in a new era in the understanding and classification of IDH-wildtype glioblastoma.

Deep learning-enhanced zero echo time MRI for glenohumeral assessment in shoulder instability: a comparative study with CT.

Carretero-Gómez L, Fung M, Wiesinger F, Carl M, McKinnon G, de Arcos J, Mandava S, Arauz S, Sánchez-Lacalle E, Nagrani S, López-Alcorocho JM, Rodríguez-Íñigo E, Malpica N, Padrón M

pubmed logopapersJun 1 2025
To evaluate image quality and lesion conspicuity of zero echo time (ZTE) MRI reconstructed with deep learning (DL)-based algorithm versus conventional reconstruction and to assess DL ZTE performance against CT for bone loss measurements in shoulder instability. Forty-four patients (9 females; 33.5 ± 15.65 years) with symptomatic anterior glenohumeral instability and no previous shoulder surgery underwent ZTE MRI and CT on the same day. ZTE images were reconstructed with conventional and DL methods and post-processed for CT-like contrast. Two musculoskeletal radiologists, blinded to the reconstruction method, independently evaluated 20 randomized MR ZTE datasets with and without DL-enhancement for perceived signal-to-noise ratio, resolution, and lesion conspicuity at humerus and glenoid using a 4-point Likert scale. Inter-reader reliability was assessed using weighted Cohen's kappa (K). An ordinal logistic regression model analyzed Likert scores, with the reconstruction method (DL-enhanced vs. conventional) as the predictor. Glenoid track (GT) and Hill-Sachs interval (HSI) measurements were performed by another radiologist on both DL ZTE and CT datasets. Intermodal agreement was assessed through intraclass correlation coefficients (ICCs) and Bland-Altman analysis. DL ZTE MR bone images scored higher than conventional ZTE across all items, with significantly improved perceived resolution (odds ratio (OR) = 7.67, p = 0.01) and glenoid lesion conspicuity (OR = 25.12, p = 0.01), with substantial inter-rater agreement (K = 0.61 (0.38-0.83) to 0.77 (0.58-0.95)). Inter-modality assessment showed almost perfect agreement between DL ZTE MR and CT for all bone measurements (overall ICC = 0.99 (0.97-0.99)), with mean differences of 0.08 (- 0.80 to 0.96) mm for GT and - 0.07 (- 1.24 to 1.10) mm for HSI. DL-based reconstruction enhances ZTE MRI quality for glenohumeral assessment, offering osseous evaluation and quantification equivalent to gold-standard CT, potentially simplifying preoperative workflow, and reducing CT radiation exposure.
Page 131 of 1621612 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.