SDS-Net: A Synchronized Dual-Stage Network for Predicting Patients Within 4.5-h Thrombolytic Treatment Window Using MRI.

Authors

Zhang X,Luan Y,Cui Y,Zhang Y,Lu C,Zhou Y,Zhang Y,Li H,Ju S,Tang T

Affiliations (3)

  • Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.
  • Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.
  • Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China. [email protected].

Abstract

Timely and precise identification of acute ischemic stroke (AIS) within 4.5 h is imperative for effective treatment decision-making. This study aims to construct a novel network that utilizes limited datasets to recognize AIS patients within this critical window. We conducted a retrospective analysis of 265 AIS patients who underwent both fluid attenuation inversion recovery (FLAIR) and diffusion-weighted imaging (DWI) within 24 h of symptom onset. Patients were categorized based on the time since stroke onset (TSS) into two groups: TSS ≤ 4.5 h and TSS > 4.5 h. The TSS was calculated as the time from stroke onset to MRI completion. We proposed a synchronized dual-stage network (SDS-Net) and a sequential dual-stage network (Dual-stage Net), which were comprised of infarct voxel identification and TSS classification stages. The models were trained on 181 patients and validated on an independent external cohort of 84 patients using metrics of area under the curve (AUC), sensitivity, specificity, and accuracy. A DeLong test was used to statistically compare the performance of the two models. SDS-Net achieved an accuracy of 0.844 with an AUC of 0.914 in the validation dataset, outperforming the Dual-stage Net, which had an accuracy of 0.822 and an AUC of 0.846. In the external test dataset, SDS-Net further demonstrated superior performance with an accuracy of 0.800 and an AUC of 0.879, compared to the accuracy of 0.694 and AUC of 0.744 of Dual-stage Net (P = 0.049). SDS-Net is a robust and reliable tool for identifying AIS patients within a 4.5-h treatment window using MRI. This model can assist clinicians in making timely treatment decisions, potentially improving patient outcomes.

Topics

Thrombolytic TherapyIschemic StrokeMagnetic Resonance ImagingNeural Networks, ComputerJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.