Sort by:
Page 128 of 1411403 results

On factors that influence deep learning-based dose prediction of head and neck tumors.

Gao R, Mody P, Rao C, Dankers F, Staring M

pubmed logopapersMay 22 2025
<i>Objective.</i>This study investigates key factors influencing deep learning-based dose prediction models for head and neck cancer radiation therapy. The goal is to evaluate model accuracy, robustness, and computational efficiency, and to identify key components necessary for optimal performance.<i>Approach.</i>We systematically analyze the impact of input and dose grid resolution, input type, loss function, model architecture, and noise on model performance. Two datasets are used: a public dataset (OpenKBP) and an in-house clinical dataset. Model performance is primarily evaluated using two metrics: dose score and dose-volume histogram (DVH) score.<i>Main results.</i>High-resolution inputs improve prediction accuracy (dose score and DVH score) by 8.6%-13.5% compared to low resolution. Using a combination of CT, planning target volumes, and organs-at-risk as input significantly enhances accuracy, with improvements of 57.4%-86.8% over using CT alone. Integrating mean absolute error (MAE) loss with value-based and criteria-based DVH loss functions further boosts DVH score by 7.2%-7.5% compared to MAE loss alone. In the robustness analysis, most models show minimal degradation under Poisson noise (0-0.3 Gy) but are more susceptible to adversarial noise (0.2-7.8 Gy). Notably, certain models, such as SwinUNETR, demonstrate superior robustness against adversarial perturbations.<i>Significance.</i>These findings highlight the importance of optimizing deep learning models and provide valuable guidance for achieving more accurate and reliable radiotherapy dose prediction.

Daily proton dose re-calculation on deep-learning corrected cone-beam computed tomography scans.

Vestergaard CD, Muren LP, Elstrøm UV, Stolarczyk L, Nørrevang O, Petersen SE, Taasti VT

pubmed logopapersMay 22 2025
Synthetic CT (sCT) generation from cone-beam CT (CBCT) must maintain stable performance and allow for accurate dose calculation across all treatment fractions to effectively support adaptive proton therapy. This study evaluated a 3D deep-learning (DL) network for sCT generation for prostate cancer patients over the full treatment course. Patient data from 25/6 prostate cancer patients were used to train/test the DL network. Patients in the test set had a planning CT, 39 CBCT images, and at least one repeat CT (reCT) used for replanning. The generated sCT images were compared to fan-beam planning and reCT images in terms of i) CT number accuracy and stability within spherical regions-of-interest (ROIs) in the bladder, prostate, and femoral heads, ii) proton range calculation accuracy through single-spot plans, and iii) dose trends in target coverage over the treatment course (one patient). The sCT images demonstrated image quality comparable to CT, while preserving the CBCT anatomy. The mean CT numbers on the sCT and CT images were comparable, e.g. for the prostate ROI they ranged from 29 HU to 59 HU for sCT, and from 36 HU to 50 HU for CT. The largest median proton range difference was 1.9 mm. Proton dose calculations showed excellent target coverage (V95%≥99.6 %) for the high-dose target. The DL network effectively generated high-quality sCT images with CT numbers, proton range, and dose characteristics comparable to fan-beam CT. Its robustness against intra-patient variations makes it a feasible tool for adaptive proton therapy.

Influence of content-based image retrieval on the accuracy and inter-reader agreement of usual interstitial pneumonia CT pattern classification.

Park S, Hwang HJ, Yun J, Chae EJ, Choe J, Lee SM, Lee HN, Shin SY, Park H, Jeong H, Kim MJ, Lee JH, Jo KW, Baek S, Seo JB

pubmed logopapersMay 22 2025
To investigate whether a content-based image retrieval (CBIR) of similar chest CT images can help usual interstitial pneumonia (UIP) CT pattern classifications among readers with varying levels of experience. This retrospective study included patients who underwent high-resolution chest CT between 2013 and 2015 for the initial workup for fibrosing interstitial lung disease. UIP classifications were assigned to CT images by three thoracic radiologists, which served as the ground truth. One hundred patients were selected as queries. The CBIR retrieved the top three similar CT images with UIP classifications using a deep learning algorithm. The diagnostic accuracies and inter-reader agreement of nine readers before and after CBIR were evaluated. Of 587 patients (mean age, 63 years; 356 men), 100 query cases (26 UIP patterns, 26 probable UIP patterns, 5 indeterminate for UIP, and 43 alternative diagnoses) were selected. After CBIR, the mean accuracy (61.3% to 67.1%; p = 0.011) and inter-reader agreement (Fleiss Kappa, 0.400 to 0.476; p = 0.003) were slightly improved. The accuracies of the radiologist group for all CT patterns except indeterminate for UIP increased after CBIR; however, they did not reach statistical significance. The resident and pulmonologist groups demonstrated mixed results: accuracy decreased for UIP pattern, increased for alternative diagnosis, and varied for others. CBIR slightly improved diagnostic accuracy and inter-reader agreement in UIP pattern classifications. However, its impact varied depending on the readers' level of experience, suggesting that the current CBIR system may be beneficial when used to complement the interpretations of experienced readers. Question CT pattern classification is important for the standardized assessment and management of idiopathic pulmonary fibrosis, but requires radiologic expertise and shows inter-reader variability. Findings CBIR slightly improved diagnostic accuracy and inter-reader agreement for UIP CT pattern classifications overall. Clinical relevance The proposed CBIR system may guide consistent work-up and treatment strategies by enhancing accuracy and inter-reader agreement in UIP CT pattern classifications by experienced readers whose expertise and experience can effectively interact with CBIR results.

Patient Reactions to Artificial Intelligence-Clinician Discrepancies: Web-Based Randomized Experiment.

Madanay F, O'Donohue LS, Zikmund-Fisher BJ

pubmed logopapersMay 22 2025
As the US Food and Drug Administration (FDA)-approved use of artificial intelligence (AI) for medical imaging rises, radiologists are increasingly integrating AI into their clinical practices. In lung cancer screening, diagnostic AI offers a second set of eyes with the potential to detect cancer earlier than human radiologists. Despite AI's promise, a potential problem with its integration is the erosion of patient confidence in clinician expertise when there is a discrepancy between the radiologist's and the AI's interpretation of the imaging findings. We examined how discrepancies between AI-derived recommendations and radiologists' recommendations affect patients' agreement with radiologists' recommendations and satisfaction with their radiologists. We also analyzed how patients' medical maximizing-minimizing preferences moderate these relationships. We conducted a randomized, between-subjects experiment with 1606 US adult participants. Assuming the role of patients, participants imagined undergoing a low-dose computerized tomography scan for lung cancer screening and receiving results and recommendations from (1) a radiologist only, (2) AI and a radiologist in agreement, (3) a radiologist who recommended more testing than AI (ie, radiologist overcalled AI), or (4) a radiologist who recommended less testing than AI (ie, radiologist undercalled AI). Participants rated the radiologist on three criteria: agreement with the radiologist's recommendation, how likely they would be to recommend the radiologist to family and friends, and how good of a provider they perceived the radiologist to be. We measured medical maximizing-minimizing preferences and categorized participants as maximizers (ie, those who seek aggressive intervention), minimizers (ie, those who prefer no or passive intervention), and neutrals (ie, those in the middle). Participants' agreement with the radiologist's recommendation was significantly lower when the radiologist undercalled AI (mean 4.01, SE 0.07, P<.001) than in the other 3 conditions, with no significant differences among them (radiologist overcalled AI [mean 4.63, SE 0.06], agreed with AI [mean 4.55, SE 0.07], or had no AI [mean 4.57, SE 0.06]). Similarly, participants were least likely to recommend (P<.001) and positively rate (P<.001) the radiologist who undercalled AI, with no significant differences among the other conditions. Maximizers agreed with the radiologist who overcalled AI (β=0.82, SE 0.14; P<.001) and disagreed with the radiologist who undercalled AI (β=-0.47, SE 0.14; P=.001). However, whereas minimizers disagreed with the radiologist who overcalled AI (β=-0.43, SE 0.18, P=.02), they did not significantly agree with the radiologist who undercalled AI (β=0.14, SE 0.17, P=.41). Radiologists who recommend less testing than AI may face decreased patient confidence in their expertise, but they may not face this same penalty for giving more aggressive recommendations than AI. Patients' reactions may depend in part on whether their general preferences to maximize or minimize align with the radiologists' recommendations. Future research should test communication strategies for radiologists' disclosure of AI discrepancies to patients.

Deep learning-based model for difficult transfemoral access prediction compared with human assessment in stroke thrombectomy.

Canals P, Garcia-Tornel A, Requena M, Jabłońska M, Li J, Balocco S, Díaz O, Tomasello A, Ribo M

pubmed logopapersMay 22 2025
In mechanical thrombectomy (MT), extracranial vascular tortuosity is among the main determinants of procedure duration and success. Currently, no rapid and reliable method exists to identify the anatomical features precluding fast and stable access to the cervical vessels. A retrospective sample of 513 patients were included in this study. Patients underwent first-line transfemoral MT following anterior circulation large vessel occlusion stroke. Difficult transfemoral access (DTFA) was defined as impossible common carotid catheterization or time from groin puncture to first carotid angiogram >30 min. A machine learning model based on 29 anatomical features automatically extracted from head-and-neck computed tomography angiography (CTA) was developed to predict DTFA. Three experienced raters independently assessed the likelihood of DTFA on a reduced cohort of 116 cases using a Likert scale as benchmark for the model, using preprocedural CTA as well as automatic 3D vascular segmentation separately. Among the study population, 11.5% of procedures (59/513) presented DTFA. Six different features from the aortic, supra-aortic, and cervical regions were included in the model. Cross-validation resulted in an area under the receiver operating characteristic (AUROC) curve of 0.76 (95% CI 0.75 to 0.76) for DTFA prediction, with high sensitivity for impossible access identification (0.90, 95% CI 0.81 to 0.94). The model outperformed human assessment in the reduced cohort [F1-score (95% CI) by experts with CTA: 0.43 (0.37 to 0.50); experts with 3D segmentation: 0.50 (0.46 to 0.54); and model: 0.70 (0.65 to 0.75)]. A fully automatic model for DTFA prediction was developed and validated. The presented method improved expert assessment of difficult access prediction in stroke MT. Derived information could be used to guide decisions regarding arterial access for MT.

Leveraging deep learning-based kernel conversion for more precise airway quantification on CT.

Choe J, Yun J, Kim MJ, Oh YJ, Bae S, Yu D, Seo JB, Lee SM, Lee HY

pubmed logopapersMay 22 2025
To evaluate the variability of fully automated airway quantitative CT (QCT) measures caused by different kernels and the effect of kernel conversion. This retrospective study included 96 patients who underwent non-enhanced chest CT at two centers. CT scans were reconstructed using four kernels (medium soft, medium sharp, sharp, very sharp) from three vendors. Kernel conversion targeting the medium soft kernel as reference was applied to sharp kernel images. Fully automated airway quantification was performed before and after conversion. The effects of kernel type and conversion on airway quantification were evaluated using analysis of variance, paired t-tests, and concordance correlation coefficient (CCC). Airway QCT measures (e.g., Pi10, wall thickness, wall area percentage, lumen diameter) decreased with sharper kernels (all, p < 0.001), with varying degrees of variability across variables and vendors. Kernel conversion substantially reduced variability between medium soft and sharp kernel images for vendors A (pooled CCC: 0.59 vs. 0.92) and B (0.40 vs. 0.91) and lung-dedicated sharp kernels of vendor C (0.26 vs. 0.71). However, it was ineffective for non-lung-dedicated sharp kernels of vendor C (0.81 vs. 0.43) and showed limited improvement in variability of QCT measures at the subsegmental level. Consistent airway segmentation and identical anatomic labeling improved subsegmental airway variability in theoretical tests. Deep learning-based kernel conversion reduced the measurement variability of airway QCT across various kernels and vendors but was less effective for non-lung-dedicated kernels and subsegmental airways. Consistent airway segmentation and precise anatomic labeling can further enhance reproducibility for reliable automated quantification. Question How do different CT reconstruction kernels affect the measurement variability of automated airway measurements, and can deep learning-based kernel conversion reduce this variability? Findings Kernel conversion improved measurement consistency across vendors for lung-dedicated kernels, but showed limited effectiveness for non-lung-dedicated kernels and subsegmental airways. Clinical relevance Understanding kernel-related variability in airway quantification and mitigating it through deep learning enables standardized analysis, but further refinements are needed for robust airway segmentation, particularly for improving measurement variability in subsegmental airways and specific kernels.

Render-FM: A Foundation Model for Real-time Photorealistic Volumetric Rendering

Zhongpai Gao, Meng Zheng, Benjamin Planche, Anwesa Choudhuri, Terrence Chen, Ziyan Wu

arxiv logopreprintMay 22 2025
Volumetric rendering of Computed Tomography (CT) scans is crucial for visualizing complex 3D anatomical structures in medical imaging. Current high-fidelity approaches, especially neural rendering techniques, require time-consuming per-scene optimization, limiting clinical applicability due to computational demands and poor generalizability. We propose Render-FM, a novel foundation model for direct, real-time volumetric rendering of CT scans. Render-FM employs an encoder-decoder architecture that directly regresses 6D Gaussian Splatting (6DGS) parameters from CT volumes, eliminating per-scan optimization through large-scale pre-training on diverse medical data. By integrating robust feature extraction with the expressive power of 6DGS, our approach efficiently generates high-quality, real-time interactive 3D visualizations across diverse clinical CT data. Experiments demonstrate that Render-FM achieves visual fidelity comparable or superior to specialized per-scan methods while drastically reducing preparation time from nearly an hour to seconds for a single inference step. This advancement enables seamless integration into real-time surgical planning and diagnostic workflows. The project page is: https://gaozhongpai.github.io/renderfm/.

Lung Nodule-SSM: Self-Supervised Lung Nodule Detection and Classification in Thoracic CT Images

Muniba Noreen, Furqan Shaukat

arxiv logopreprintMay 21 2025
Lung cancer remains among the deadliest types of cancer in recent decades, and early lung nodule detection is crucial for improving patient outcomes. The limited availability of annotated medical imaging data remains a bottleneck in developing accurate computer-aided diagnosis (CAD) systems. Self-supervised learning can help leverage large amounts of unlabeled data to develop more robust CAD systems. With the recent advent of transformer-based architecture and their ability to generalize to unseen tasks, there has been an effort within the healthcare community to adapt them to various medical downstream tasks. Thus, we propose a novel "LungNodule-SSM" method, which utilizes selfsupervised learning with DINOv2 as a backbone to enhance lung nodule detection and classification without annotated data. Our methodology has two stages: firstly, the DINOv2 model is pre-trained on unlabeled CT scans to learn robust feature representations, then secondly, these features are fine-tuned using transformer-based architectures for lesionlevel detection and accurate lung nodule diagnosis. The proposed method has been evaluated on the challenging LUNA 16 dataset, consisting of 888 CT scans, and compared with SOTA methods. Our experimental results show the superiority of our proposed method with an accuracy of 98.37%, explaining its effectiveness in lung nodule detection. The source code, datasets, and pre-processed data can be accessed using the link:https://github.com/EMeRALDsNRPU/Lung-Nodule-SSM-Self-Supervised-Lung-Nodule-Detection-and-Classification/tree/main

FasNet: a hybrid deep learning model with attention mechanisms and uncertainty estimation for liver tumor segmentation on LiTS17.

Singh R, Gupta S, Almogren A, Rehman AU, Bharany S, Altameem A, Choi J

pubmed logopapersMay 21 2025
Liver cancer, especially hepatocellular carcinoma (HCC), remains one of the most fatal cancers globally, emphasizing the critical need for accurate tumor segmentation to enable timely diagnosis and effective treatment planning. Traditional imaging techniques, such as CT and MRI, rely on manual interpretation, which can be both time-intensive and subject to variability. This study introduces FasNet, an innovative hybrid deep learning model that combines ResNet-50 and VGG-16 architectures, incorporating Channel and Spatial Attention mechanisms alongside Monte Carlo Dropout to improve segmentation precision and reliability. FasNet leverages ResNet-50's robust feature extraction and VGG-16's detailed spatial feature capture to deliver superior liver tumor segmentation accuracy. Channel and spatial attention mechanisms could selectively focus on the most relevant features and spatial regions for suitable segmentation with good accuracy and reliability. Monte Carlo Dropout estimates uncertainty and adds robustness, which is critical for high-stakes medical applications. Tested on the LiTS17 dataset, FasNet achieved a Dice Coefficient of 0.8766 and a Jaccard Index of 0.8487, surpassing several state-of-the-art methods. The Channel and Spatial Attention mechanisms in FasNet enhance feature selection, focusing on the most relevant spatial and channel information, while Monte Carlo Dropout improves model robustness and uncertainty estimation. These results position FasNet as a powerful diagnostic tool, offering precise and automated liver tumor segmentation that aids in early detection and precise treatment, ultimately enhancing patient outcomes.

Coronary Computed Tomographic Angiography to Optimize the Diagnostic Yield of Invasive Angiography for Low-Risk Patients Screened With Artificial Intelligence: Protocol for the CarDIA-AI Randomized Controlled Trial.

Petch J, Tabja Bortesi JP, Sheth T, Natarajan M, Pinilla-Echeverri N, Di S, Bangdiwala SI, Mosleh K, Ibrahim O, Bainey KR, Dobranowski J, Becerra MP, Sonier K, Schwalm JD

pubmed logopapersMay 21 2025
Invasive coronary angiography (ICA) is the gold standard in the diagnosis of coronary artery disease (CAD). Being invasive, it carries rare but serious risks including myocardial infarction, stroke, major bleeding, and death. A large proportion of elective outpatients undergoing ICA have nonobstructive CAD, highlighting the suboptimal use of this test. Coronary computed tomographic angiography (CCTA) is a noninvasive option that provides similar information with less risk and is recommended as a first-line test for patients with low-to-intermediate risk of CAD. Leveraging artificial intelligence (AI) to appropriately direct patients to ICA or CCTA based on the predicted probability of disease may improve the efficiency and safety of diagnostic pathways. he CarDIA-AI (Coronary computed tomographic angiography to optimize the Diagnostic yield of Invasive Angiography for low-risk patients screened with Artificial Intelligence) study aims to evaluate whether AI-based risk assessment for obstructive CAD implemented within a centralized triage process can optimize the use of ICA in outpatients referred for nonurgent ICA. CarDIA-AI is a pragmatic, open-label, superior randomized controlled trial involving 2 Canadian cardiac centers. A total of 252 adults referred for elective outpatient ICA will be randomized 1:1 to usual care (directly proceeding to ICA) or to triage using an AI-based decision support tool. The AI-based decision support tool was developed using referral information from over 37,000 patients and uses a light gradient boosting machine model to predict the probability of obstructive CAD based on 42 clinically relevant predictors, including patient referral information, demographic characteristics, risk factors, and medical history. Participants in the intervention arm will have their ICA referral forms and medical charts reviewed, and select details entered into the decision support tool, which recommends CCTA or ICA based on the patient's predicted probability of obstructive CAD. All patients will receive the selected imaging modality within 6 weeks of referral and will be subsequently followed for 90 days. The primary outcome is the proportion of normal or nonobstructive CAD diagnosed via ICA and will be assessed using a 2-sided z test to compare the patients referred for cardiac investigation with normal or nonobstructive CAD diagnosed through ICA between the intervention and control groups. Secondary outcomes include the number of angiograms avoided and the diagnostic yield of ICA. Recruitment began on January 9, 2025, and is expected to conclude in mid to late 2025. As of April 14, 2025, we have enrolled 81 participants. Data analysis will begin once data collection is completed. We expect to submit the results for publication in 2026. CarDIA-AI will be the first randomized controlled trial using AI to optimize patient selection for CCTA versus ICA, potentially improving diagnostic efficiency, avoiding unnecessary complications of ICA, and improving health care resource usage. ClinicalTrials.gov NCT06648239; https://clinicaltrials.gov/study/NCT06648239/. DERR1-10.2196/71726.
Page 128 of 1411403 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.