Sort by:
Page 127 of 1411403 results

Improvement of deep learning-based dose conversion accuracy to a Monte Carlo algorithm in proton beam therapy for head and neck cancers.

Kato R, Kadoya N, Kato T, Tozuka R, Ogawa S, Murakami M, Jingu K

pubmed logopapersMay 23 2025
This study is aimed to clarify the effectiveness of the image-rotation technique and zooming augmentation to improve the accuracy of the deep learning (DL)-based dose conversion from pencil beam (PB) to Monte Carlo (MC) in proton beam therapy (PBT). We adapted 85 patients with head and neck cancers. The patient dataset was randomly divided into 101 plans (334 beams) for training/validation and 11 plans (34 beams) for testing. Further, we trained a DL model that inputs a computed tomography (CT) image and the PB dose in a single-proton field and outputs the MC dose, applying the image-rotation technique and zooming augmentation. We evaluated the DL-based dose conversion accuracy in a single-proton field. The average γ-passing rates (a criterion of 3%/3 mm) were 80.6 ± 6.6% for the PB dose, 87.6 ± 6.0% for the baseline model, 92.1 ± 4.7% for the image-rotation model, and 93.0 ± 5.2% for the data-augmentation model, respectively. Moreover, the average range differences for R90 were - 1.5 ± 3.6% in the PB dose, 0.2 ± 2.3% in the baseline model, -0.5 ± 1.2% in the image-rotation model, and - 0.5 ± 1.1% in the data-augmentation model, respectively. The doses as well as ranges were improved by the image-rotation technique and zooming augmentation. The image-rotation technique and zooming augmentation greatly improved the DL-based dose conversion accuracy from the PB to the MC. These techniques can be powerful tools for improving the DL-based dose calculation accuracy in PBT.

Detection, Classification, and Segmentation of Rib Fractures From CT Data Using Deep Learning Models: A Review of Literature and Pooled Analysis.

Den Hengst S, Borren N, Van Lieshout EMM, Doornberg JN, Van Walsum T, Wijffels MME, Verhofstad MHJ

pubmed logopapersMay 23 2025
Trauma-induced rib fractures are common injuries. The gold standard for diagnosing rib fractures is computed tomography (CT), but the sensitivity in the acute setting is low, and interpreting CT slices is labor-intensive. This has led to the development of new diagnostic approaches leveraging deep learning (DL) models. This systematic review and pooled analysis aimed to compare the performance of DL models in the detection, segmentation, and classification of rib fractures based on CT scans. A literature search was performed using various databases for studies describing DL models detecting, segmenting, or classifying rib fractures from CT data. Reported performance metrics included sensitivity, false-positive rate, F1-score, precision, accuracy, and mean average precision. A meta-analysis was performed on the sensitivity scores to compare the DL models with clinicians. Of the 323 identified records, 25 were included. Twenty-one studies reported on detection, four on segmentation, and 10 on classification. Twenty studies had adequate data for meta-analysis. The gold standard labels were provided by clinicians who were radiologists and orthopedic surgeons. For detecting rib fractures, DL models had a higher sensitivity (86.7%; 95% CI: 82.6%-90.2%) than clinicians (75.4%; 95% CI: 68.1%-82.1%). In classification, the sensitivity of DL models for displaced rib fractures (97.3%; 95% CI: 95.6%-98.5%) was significantly better than that of clinicians (88.2%; 95% CI: 84.8%-91.3%). DL models for rib fracture detection and classification achieved promising results. With better sensitivities than clinicians for detecting and classifying displaced rib fractures, the future should focus on implementing DL models in daily clinics. Level III-systematic review and pooled analysis.

COVID-19CT+: A public dataset of CT images for COVID-19 retrospective analysis.

Sun Y, Du T, Wang B, Rahaman MM, Wang X, Huang X, Jiang T, Grzegorzek M, Sun H, Xu J, Li C

pubmed logopapersMay 23 2025
Background and objectiveCOVID-19 is considered as the biggest global health disaster in the 21st century, and it has a huge impact on the world.MethodsThis paper publishes a publicly available dataset of CT images of multiple types of pneumonia (COVID-19CT+). Specifically, the dataset contains 409,619 CT images of 1333 patients, with subset-A containing 312 community-acquired pneumonia cases and subset-B containing 1021 COVID-19 cases. In order to demonstrate that there are differences in the methods used to classify COVID-19CT+ images across time, we selected 13 classical machine learning classifiers and 5 deep learning classifiers to test the image classification task.ResultsIn this study, two sets of experiments are conducted using traditional machine learning and deep learning methods, the first set of experiments is the classification of COVID-19 in Subset-B versus COVID-19 white lung disease, and the second set of experiments is the classification of community-acquired pneumonia in Subset-A versus COVID-19 in Subset-B, demonstrating that the different periods of the methods differed on COVID-19CT+. On the first set of experiments, the accuracy of traditional machine learning reaches a maximum of 97.3% and a minimum of only 62.6%. Deep learning algorithms reaches a maximum of 97.9% and a minimum of 85.7%. On the second set of experiments, traditional machine learning reaches a high of 94.6% accuracy and a low of 56.8%. The deep learning algorithm reaches a high of 91.9% and a low of 86.3%.ConclusionsThe COVID-19CT+ in this study covers a large number of CT images of patients with COVID-19 and community-acquired pneumonia and is one of the largest datasets available. We expect that this dataset will attract more researchers to participate in exploring new automated diagnostic algorithms to contribute to the improvement of the diagnostic accuracy and efficiency of COVID-19.

Deep learning and iterative image reconstruction for head CT: Impact on image quality and radiation dose reduction-Comparative study.

Pula M, Kucharczyk E, Zdanowicz-Ratajczyk A, Dorochowicz M, Guzinski M

pubmed logopapersMay 23 2025
<b>Background and purpose:</b> This study focuses on an objective evaluation of a novel reconstruction algorithm-Deep Learning Image Reconstruction (DLIR)-ability to improve image quality and reduce radiation dose compared to the established standard of Adaptive Statistical Iterative Reconstruction-V (ASIR-V), in unenhanced head computed tomography (CT). <b>Materials and methods:</b> A retrospective analysis of 163 consecutive unenhanced head CTs was conducted. Image quality assessment was computed on the objective parameters of Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR), derived from 5 regions of interest (ROI). The evaluation of DLIR dose reduction abilities was based on the analysis of the PACS derived parameters of dose length product and computed tomography dose index volume (CTDIvol). <b>Results:</b> Following the application of rigorous criteria, the study comprised 35 patients. Significant image quality improvement was achieved with the implementation of DLIR, as evidenced by up to a 145% and 160% increase in SNR in supra- and infratentorial regions, respectively. CNR measurements further confirmed the superiority of DLIR over ASIR-V, with an increase of 171.5% in the supratentorial region and a 59.3% increase in the infratentorial region. Despite the signal improvement and noise reduction DLIR facilitated radiation dose reduction of up to 44% in CTDIvol. <b>Conclusion:</b> Implementation of DLIR in head CT scans enables significant image quality improvement and dose reduction abilities compared to standard ASIR-V. However, the dose reduction feature was proven insufficient to counteract the lack of gantry angulation in wide-detector scanners.

High-resolution deep learning reconstruction to improve the accuracy of CT fractional flow reserve.

Tomizawa N, Fan R, Fujimoto S, Nozaki YO, Kawaguchi YO, Takamura K, Hiki M, Aikawa T, Takahashi N, Okai I, Okazaki S, Kumamaru KK, Minamino T, Aoki S

pubmed logopapersMay 22 2025
This study aimed to compare the diagnostic performance of CT-derived fractional flow reserve (CT-FFR) using model-based iterative reconstruction (MBIR) and high-resolution deep learning reconstruction (HR-DLR) images to detect functionally significant stenosis with invasive FFR as the reference standard. This single-center retrospective study included 79 consecutive patients (mean age, 70 ± 11 [SD] years; 57 male) who underwent coronary CT angiography followed by invasive FFR between February 2022 and March 2024. CT-FFR was calculated using a mesh-free simulation. The cutoff for functionally significant stenosis was defined as FFR ≤ 0.80. CT-FFR was compared with MBIR and HR-DLR using receiver operating characteristic curve analysis. The mean invasive FFR value was 0.81 ± 0.09, and 46 of 98 vessels (47%) had FFR ≤ 0.80. The mean noise of HR-DLR was lower than that of MBIR (14.4 ± 1.7 vs 23.5 ± 3.1, p < 0.001). The area under the receiver operating characteristic curve for the diagnosis of functionally significant stenosis of HR-DLR (0.88; 95% CI: 0.80, 0.95) was higher than that of MBIR (0.76; 95% CI: 0.67, 0.86; p = 0.003). The diagnostic accuracy of HR-DLR (88%; 86 of 98 vessels; 95% CI: 80, 94) was higher than that of MBIR (70%; 69 of 98 vessels; 95% CI: 60, 79; p < 0.001). HR-DLR improves image quality and the diagnostic performance of CT-FFR for the diagnosis of functionally significant stenosis. Question The effect of HR-DLR on the diagnostic performance of CT-FFR has not been investigated. Findings HR-DLR improved the diagnostic performance of CT-FFR over MBIR for the diagnosis of functionally significant stenosis as assessed by invasive FFR. Clinical relevance HR-DLR would further enhance the clinical utility of CT-FFR in diagnosing the functional significance of coronary stenosis.

Deep Learning for Automated Prediction of Sphenoid Sinus Pneumatization in Computed Tomography.

Alamer A, Salim O, Alharbi F, Alsaleem F, Almuqbil A, Alhassoon K, Alsunaydih F

pubmed logopapersMay 22 2025
The sphenoid sinus is an important access point for trans-sphenoidal surgeries, but variations in its pneumatization may complicate surgical safety. Deep learning can be used to identify these anatomical variations. We developed a convolutional neural network (CNN) model for the automated prediction of sphenoid sinus pneumatization patterns in computed tomography (CT) scans. This model was tested on mid-sagittal CT images. Two radiologists labeled all CT images into four pneumatization patterns: Conchal (type I), presellar (type II), sellar (type III), and postsellar (type IV). We then augmented the training set to address the limited size and imbalanced nature of the data. The initial dataset included 249 CT images, divided into training (n = 174) and test (n = 75) datasets. The training dataset was augmented to 378 images. Following augmentation, the overall diagnostic accuracy of the model improved from 76.71% to 84%, with an area under the curve (AUC) of 0.84, indicating very good diagnostic performance. Subgroup analysis showed excellent results for type IV, with the highest AUC of 0.93, perfect sensitivity (100%), and an F1-score of 0.94. The model also performed robustly for type I, achieving an accuracy of 97.33% and high specificity (99%). These metrics highlight the model's potential for reliable clinical application. The proposed CNN model demonstrates very good diagnostic accuracy in identifying various sphenoid sinus pneumatization patterns, particularly excelling in type IV, which is crucial for endoscopic sinus surgery due to its higher risk of surgical complications. By assisting radiologists and surgeons, this model enhances the safety of transsphenoidal surgery, highlighting its value, novelty, and applicability in clinical settings.

HealthiVert-GAN: A Novel Framework of Pseudo-Healthy Vertebral Image Synthesis for Interpretable Compression Fracture Grading.

Zhang Q, Chuang C, Zhang S, Zhao Z, Wang K, Xu J, Sun J

pubmed logopapersMay 22 2025
Osteoporotic vertebral compression fractures (OVCFs) are prevalent in the elderly population, typically assessed on computed tomography (CT) scans by evaluating vertebral height loss. This assessment helps determine the fracture's impact on spinal stability and the need for surgical intervention. However, the absence of pre-fracture CT scans and standardized vertebral references leads to measurement errors and inter-observer variability, while irregular compression patterns further challenge the precise grading of fracture severity. While deep learning methods have shown promise in aiding OVCFs screening, they often lack interpretability and sufficient sensitivity, limiting their clinical applicability. To address these challenges, we introduce a novel vertebra synthesis-height loss quantification-OVCFs grading framework. Our proposed model, HealthiVert-GAN, utilizes a coarse-to-fine synthesis network designed to generate pseudo-healthy vertebral images that simulate the pre-fracture state of fractured vertebrae. This model integrates three auxiliary modules that leverage the morphology and height information of adjacent healthy vertebrae to ensure anatomical consistency. Additionally, we introduce the Relative Height Loss of Vertebrae (RHLV) as a quantification metric, which divides each vertebra into three sections to measure height loss between pre-fracture and post-fracture states, followed by fracture severity classification using a Support Vector Machine (SVM). Our approach achieves state-of-the-art classification performance on both the Verse2019 dataset and in-house dataset, and it provides cross-sectional distribution maps of vertebral height loss. This practical tool enhances diagnostic accuracy in clinical settings and assisting in surgical decision-making.

ActiveNaf: A novel NeRF-based approach for low-dose CT image reconstruction through active learning.

Zidane A, Shimshoni I

pubmed logopapersMay 22 2025
CT imaging provides essential information about internal anatomy; however, conventional CT imaging delivers radiation doses that can become problematic for patients requiring repeated imaging, highlighting the need for dose-reduction techniques. This study aims to reduce radiation doses without compromising image quality. We propose an approach that combines Neural Attenuation Fields (NAF) with an active learning strategy to better optimize CT reconstructions given a limited number of X-ray projections. Our method uses a secondary neural network to predict the Peak Signal-to-Noise Ratio (PSNR) of 2D projections generated by NAF from a range of angles in the operational range of the CT scanner. This prediction serves as a guide for the active learning process in choosing the most informative projections. In contrast to conventional techniques that acquire all X-ray projections in a single session, our technique iteratively acquires projections. The iterative process improves reconstruction quality, reduces the number of required projections, and decreases patient radiation exposure. We tested our methodology on spinal imaging using a limited subset of the VerSe 2020 dataset. We compare image quality metrics (PSNR3D, SSIM3D, and PSNR2D) to the baseline method and find significant improvements. Our method achieves the same quality with 36 projections as the baseline method achieves with 60. Our findings demonstrate that our approach achieves high-quality 3D CT reconstructions from sparse data, producing clearer and more detailed images of anatomical structures. This work lays the groundwork for advanced imaging techniques, paving the way for safer and more efficient medical imaging procedures.

Deep Learning Image Reconstruction (DLIR) Algorithm to Maintain High Image Quality and Diagnostic Accuracy in Quadruple-low CT Angiography of Children with Pulmonary Sequestration: A Case Control Study.

Li H, Zhang Y, Hua S, Sun R, Zhang Y, Yang Z, Peng Y, Sun J

pubmed logopapersMay 22 2025
CT angiography (CTA) is a commonly used clinical examination to detect abnormal arteries and diagnose pulmonary sequestration (PS). Reducing the radiation dose, contrast medium dosage, and injection pressure in CTA, especially in children, has always been an important research topic, but few research is proven by pathology. The current study aimed to evaluate the diagnostic accuracy for children with PS in a quadruple-low CTA (4L-CTA: low tube voltage, radiation, contrast medium, and injection flow rate) using deep learning image reconstruction (DLIR) in comparison with routine protocol CTA with adaptive statistical iterative reconstruction-V (ASIR-V) MATERIALS AND METHODS: 53 patients (1.50±1.36years) suspected with PS were enrolled to undergo chest 4L-CTA using 70kVp tube voltage with radiation dose or 0.90 mGy in volumetric CT dose index (CTDIvol) and contrast medium dose of 0.8 ml/kg injected in 16 s. Images were reconstructed using DLIR. Another 53 patients (1.25±1.02years) with a routine dose protocol was used for comparison, and images were reconstructed with ASIR-V. The contrast-to-noise ratio (CNR) and edge-rise distance (ERD) of the aorta were calculated. The subjective overall image quality and artery visualization were evaluated using a 5-point scale (5, excellent; 3, acceptable). All patients underwent surgery after CT, the sensitivity and specificity for diagnosing PS were calculated. 4L-CTA reduced radiation dose by 51%, contrast dose by 47%, injection flow rate by 44% and injection pressure by 44% compared to the routine CTA (all p<0.05). Both groups had satisfactory subjective image quality and achieved 100% in both sensitivity and specificity for diagnosing PS. 4L-CTA had a reduced CNR (by 27%, p<0.05) but similar ERD, which reflects the image spatial resolution (p>0.05) compared to the routine CTA. 4L-CTA revealed small arteries with a diameter of 0.8 mm. DLIR ensures the realization of 4L-CTA in children with PS for significant radiation and contrast dose reduction, while maintaining image quality, visualization of small arteries, and high diagnostic accuracy.

CT-Agent: A Multimodal-LLM Agent for 3D CT Radiology Question Answering

Yuren Mao, Wenyi Xu, Yuyang Qin, Yunjun Gao

arxiv logopreprintMay 22 2025
Computed Tomography (CT) scan, which produces 3D volumetric medical data that can be viewed as hundreds of cross-sectional images (a.k.a. slices), provides detailed anatomical information for diagnosis. For radiologists, creating CT radiology reports is time-consuming and error-prone. A visual question answering (VQA) system that can answer radiologists' questions about some anatomical regions on the CT scan and even automatically generate a radiology report is urgently needed. However, existing VQA systems cannot adequately handle the CT radiology question answering (CTQA) task for: (1) anatomic complexity makes CT images difficult to understand; (2) spatial relationship across hundreds slices is difficult to capture. To address these issues, this paper proposes CT-Agent, a multimodal agentic framework for CTQA. CT-Agent adopts anatomically independent tools to break down the anatomic complexity; furthermore, it efficiently captures the across-slice spatial relationship with a global-local token compression strategy. Experimental results on two 3D chest CT datasets, CT-RATE and RadGenome-ChestCT, verify the superior performance of CT-Agent.
Page 127 of 1411403 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.