High-resolution deep learning reconstruction to improve the accuracy of CT fractional flow reserve.

Authors

Tomizawa N,Fan R,Fujimoto S,Nozaki YO,Kawaguchi YO,Takamura K,Hiki M,Aikawa T,Takahashi N,Okai I,Okazaki S,Kumamaru KK,Minamino T,Aoki S

Affiliations (3)

  • Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan. [email protected].
  • Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
  • Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.

Abstract

This study aimed to compare the diagnostic performance of CT-derived fractional flow reserve (CT-FFR) using model-based iterative reconstruction (MBIR) and high-resolution deep learning reconstruction (HR-DLR) images to detect functionally significant stenosis with invasive FFR as the reference standard. This single-center retrospective study included 79 consecutive patients (mean age, 70 ± 11 [SD] years; 57 male) who underwent coronary CT angiography followed by invasive FFR between February 2022 and March 2024. CT-FFR was calculated using a mesh-free simulation. The cutoff for functionally significant stenosis was defined as FFR ≤ 0.80. CT-FFR was compared with MBIR and HR-DLR using receiver operating characteristic curve analysis. The mean invasive FFR value was 0.81 ± 0.09, and 46 of 98 vessels (47%) had FFR ≤ 0.80. The mean noise of HR-DLR was lower than that of MBIR (14.4 ± 1.7 vs 23.5 ± 3.1, p < 0.001). The area under the receiver operating characteristic curve for the diagnosis of functionally significant stenosis of HR-DLR (0.88; 95% CI: 0.80, 0.95) was higher than that of MBIR (0.76; 95% CI: 0.67, 0.86; p = 0.003). The diagnostic accuracy of HR-DLR (88%; 86 of 98 vessels; 95% CI: 80, 94) was higher than that of MBIR (70%; 69 of 98 vessels; 95% CI: 60, 79; p < 0.001). HR-DLR improves image quality and the diagnostic performance of CT-FFR for the diagnosis of functionally significant stenosis. Question The effect of HR-DLR on the diagnostic performance of CT-FFR has not been investigated. Findings HR-DLR improved the diagnostic performance of CT-FFR over MBIR for the diagnosis of functionally significant stenosis as assessed by invasive FFR. Clinical relevance HR-DLR would further enhance the clinical utility of CT-FFR in diagnosing the functional significance of coronary stenosis.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.