Deep Learning for Automated Prediction of Sphenoid Sinus Pneumatization in Computed Tomography.
Authors
Affiliations (4)
Affiliations (4)
- Department of Radiology, College of Medicine, Qassim University, Buraydah 52571, Saudi Arabia.
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Melbourne, Australia.
- Department of Electrical Engineering, College of Engineering, Qassim University, Buraydah 52571, Saudi Arabia.
- Department of Computer Science, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia.
Abstract
The sphenoid sinus is an important access point for trans-sphenoidal surgeries, but variations in its pneumatization may complicate surgical safety. Deep learning can be used to identify these anatomical variations. We developed a convolutional neural network (CNN) model for the automated prediction of sphenoid sinus pneumatization patterns in computed tomography (CT) scans. This model was tested on mid-sagittal CT images. Two radiologists labeled all CT images into four pneumatization patterns: Conchal (type I), presellar (type II), sellar (type III), and postsellar (type IV). We then augmented the training set to address the limited size and imbalanced nature of the data. The initial dataset included 249 CT images, divided into training (n = 174) and test (n = 75) datasets. The training dataset was augmented to 378 images. Following augmentation, the overall diagnostic accuracy of the model improved from 76.71% to 84%, with an area under the curve (AUC) of 0.84, indicating very good diagnostic performance. Subgroup analysis showed excellent results for type IV, with the highest AUC of 0.93, perfect sensitivity (100%), and an F1-score of 0.94. The model also performed robustly for type I, achieving an accuracy of 97.33% and high specificity (99%). These metrics highlight the model's potential for reliable clinical application. The proposed CNN model demonstrates very good diagnostic accuracy in identifying various sphenoid sinus pneumatization patterns, particularly excelling in type IV, which is crucial for endoscopic sinus surgery due to its higher risk of surgical complications. By assisting radiologists and surgeons, this model enhances the safety of transsphenoidal surgery, highlighting its value, novelty, and applicability in clinical settings.