Sort by:
Page 123 of 3543538 results

Automated ultrasound system ARTHUR V.2.0 with AI analysis DIANA V.2.0 matches expert rheumatologist in hand joint assessment of rheumatoid arthritis patients.

Frederiksen BA, Hammer HB, Terslev L, Ammitzbøll-Danielsen M, Savarimuthu TR, Weber ABH, Just SA

pubmed logopapersAug 5 2025
To evaluate the agreement and repeatability of an automated robotic ultrasound system (ARTHUR V.2.0) combined with an AI model (DIANA V.2.0) in assessing synovial hypertrophy (SH) and Doppler activity in rheumatoid arthritis (RA) patients, using an expert rheumatologist's assessment as the reference standard. 30 RA patients underwent two consecutive ARTHUR V.2.0 scans and rheumatologist assessment of 22 hand joints, with the rheumatologist blinded to the automated system's results. Images were scored for SH and Doppler by DIANA V.2.0 using the EULAR-OMERACT scale (0-3). The agreement was evaluated by weighted Cohen's kappa, percent exact agreement (PEA), percent close agreement (PCA) and binary outcomes using Global OMERACT-EULAR Synovitis Scoring (healthy ≤1 vs diseased ≥2). Comparisons included intra-robot repeatability and agreement with the expert rheumatologist and a blinded independent assessor. ARTHUR successfully scanned 564 out of 660 joints, corresponding to an overall success rate of 85.5%. Intra-robot agreement for SH: PEA 63.0%, PCA 93.0%, binary 90.5% and for Doppler, PEA 74.8%, PCA 93.7%, binary 88.1% and kappa values of 0.54 and 0.49. Agreement between ARTHUR+DIANA and the rheumatologist: SH (PEA 57.9%, PCA 92.9%, binary 87.3%, kappa 0.38); Doppler (PEA 77.3%, PCA 94.2%, binary 91.2%, kappa 0.44) and with the independent assessor: SH (PEA 49.0%, PCA 91.2%, binary 80.0%, kappa 0.39); Doppler (PEA 62.6%, PCA 94.4%, binary 88.1%, kappa 0.48). ARTHUR V.2.0 and DIANA V.2.0 demonstrated repeatability on par with intra-expert agreement reported in the literature and showed encouraging agreement with human assessors, though further refinement is needed to optimise performance across specific joints.

Automated vertebral bone quality score measurement on lumbar MRI using deep learning: Development and validation of an AI algorithm.

Jayasuriya NM, Feng E, Nathani KR, Delawan M, Katsos K, Bhagra O, Freedman BA, Bydon M

pubmed logopapersAug 5 2025
Bone health is a critical determinant of spine surgery outcomes, yet many patients undergo procedures without adequate preoperative assessment due to limitations in current bone quality assessment methods. This study aimed to develop and validate an artificial intelligence-based algorithm that predicts Vertebral Bone Quality (VBQ) scores from routine MRI scans, enabling improved preoperative identification of patients at risk for poor surgical outcomes. This study utilized 257 lumbar spine T1-weighted MRI scans from the SPIDER challenge dataset. VBQ scores were calculated through a three-step process: selecting the mid-sagittal slice, measuring vertebral body signal intensity from L1-L4, and normalizing by cerebrospinal fluid signal intensity. A YOLOv8 model was developed to automate region of interest placement and VBQ score calculation. The system was validated against manual annotations from 47 lumbar spine surgery patients, with performance evaluated using precision, recall, mean average precision, intraclass correlation coefficient, Pearson correlation, RMSE, and mean error. The YOLOv8 model demonstrated high accuracy in vertebral body detection (precision: 0.9429, recall: 0.9076, [email protected]: 0.9403, mAP@[0.5:0.95]: 0.8288). Strong interrater reliability was observed with ICC values of 0.95 (human-human), 0.88 and 0.93 (human-AI). Pearson correlations for VBQ scores between human and AI measurements were 0.86 and 0.9, with RMSE values of 0.58 and 0.42 respectively. The AI-based algorithm accurately predicts VBQ scores from routine lumbar MRIs. This approach has potential to enhance early identification and intervention for patients with poor bone health, leading to improved surgical outcomes. Further external validation is recommended to ensure generalizability and clinical applicability.

STARFormer: A novel spatio-temporal aggregation reorganization transformer of FMRI for brain disorder diagnosis.

Dong W, Li Y, Zeng W, Chen L, Yan H, Siok WT, Wang N

pubmed logopapersAug 5 2025
Many existing methods that use functional magnetic resonance imaging (fMRI) to classify brain disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), often overlook the integration of spatial and temporal dependencies of the blood oxygen level-dependent (BOLD) signals, which may lead to inaccurate or imprecise classification results. To solve this problem, we propose a spatio-temporal aggregation reorganization transformer (STARFormer) that effectively captures both spatial and temporal features of BOLD signals by incorporating three key modules. The region of interest (ROI) spatial structure analysis module uses eigenvector centrality (EC) to reorganize brain regions based on effective connectivity, highlighting critical spatial relationships relevant to the brain disorder. The temporal feature reorganization module systematically segments the time series into equal-dimensional window tokens and captures multiscale features through variable window and cross-window attention. The spatio-temporal feature fusion module employs a parallel transformer architecture with dedicated temporal and spatial branches to extract integrated features. The proposed STARFormer has been rigorously evaluated on two publicly available datasets for the classification of ASD and ADHD. The experimental results confirm that STARFormer achieves state-of-the-art performance across multiple evaluation metrics, providing a more accurate and reliable tool for the diagnosis of brain disorders and biomedical research. The official implementation codes are available at: https://github.com/NZWANG/STARFormer.

Prediction of breast cancer HER2 status changes based on ultrasound radiomics attention network.

Liu J, Xue X, Yan Y, Song Q, Cheng Y, Wang L, Wang X, Xu D

pubmed logopapersAug 5 2025
Following Neoadjuvant Chemotherapy (NAC), there exists a probability of changes occurring in the Human Epidermal Growth Factor Receptor 2 (HER2) status. If these changes are not promptly addressed, it could hinder the timely adjustment of treatment plans, thereby affecting the optimal management of breast cancer. Consequently, the accurate prediction of HER2 status changes holds significant clinical value, underscoring the need for a model capable of precisely forecasting these alterations. In this paper, we elucidate the intricacies surrounding HER2 status changes, and propose a deep learning architecture combined with radiomics techniques, named as Ultrasound Radiomics Attention Network (URAN), to predict HER2 status changes. Firstly, radiomics technology is used to extract ultrasound image features to provide rich and comprehensive medical information. Secondly, HER2 Key Feature Selection (HKFS) network is constructed for retain crucial features relevant to HER2 status change. Thirdly, we design Max and Average Attention and Excitation (MAAE) network to adjust the model's focus on different key features. Finally, a fully connected neural network is utilized to predict HER2 status changes. The code to reproduce our experiments can be found at https://github.com/joanaapa/Foundation-Medical. Our research was carried out using genuine ultrasound images sourced from hospitals. On this dataset, URAN outperformed both state-of-the-art and traditional methods in predicting HER2 status changes, achieving an accuracy of 0.8679 and an AUC of 0.8328 (95% CI: 0.77-0.90). Comparative experiments on the public BUS_UCLM dataset further demonstrated URAN's superiority, attaining an accuracy of 0.9283 and an AUC of 0.9161 (95% CI: 0.91-0.92). Additionally, we undertook rigorously crafted ablation studies, which validated the logicality and effectiveness of the radiomics techniques, as well as the HKFS and MAAE modules integrated within the URAN model. The results pertaining to specific HER2 statuses indicate that URAN exhibits superior accuracy in predicting changes in HER2 status characterized by low expression and IHC scores of 2+ or below. Furthermore, we examined the radiomics attributes of ultrasound images and discovered that various wavelet transform features significantly impacted the changes in HER2 status. We have developed a URAN method for predicting HER2 status changes that combines radiomics techniques and deep learning. URAN model have better predictive performance compared to other competing algorithms, and can mine key radiomics features related to HER2 status changes.

Integration of Spatiotemporal Dynamics and Structural Connectivity for Automated Epileptogenic Zone Localization in Temporal Lobe Epilepsy.

Xiao L, Zheng Q, Li S, Wei Y, Si W, Pan Y

pubmed logopapersAug 5 2025
Accurate localization of the epileptogenic zone (EZ) is essential for surgical success in temporal lobe epilepsy. While stereoelectroencephalography (SEEG) and structural magnetic resonance imaging (MRI) provide complementary insights, existing unimodal methods fail to fully capture epileptogenic brain activity, and multimodal fusion remains challenging due to data complexity and surgeon-dependent interpretations. To address these issues, we proposed a novel multimodal framework to improve EZ localization with SEEG-drived electrophysiology with structural connectivity in temporal lobe epilepsy. By retrospectively analyzing SEEG, post-implant Computed Tomography (CT) and MRI (T1 & Diffusion Tensor Imaging (DTI)) data from 15 patients, we reconstructed SEEG electrode positions and obtained the SEEG and structural connectivity fusion features. We then proposed a spatiotemporal co-attention deep neural network (ST-CANet) to identify the fusion features, categorizing electrodes into seizure onset zone (SOZ), propagation zone (PZ), and non-involved zone (NIZ). Anatomical EZ boundaries were delineated by fusing the electrode position and classification information on brain atlas. The proposed method was evaluated based on the identification and localization performance of three epilepsy-related zones. The experiment results demonstrate that our method achieves 98.08% average accuracy and outperforms other identification methods, and improves the localization with Dice similarity coefficients (DSC) of 95.65% (SOZ), 92.13% (PZ), and 99.61% (NIZ), aligning with clinically validated surgical resection areas. This multimodal fusion strategy based on electrophysiological and structural connectivity information promises to assist neurosurgeons in accurately localizing EZ and may find broader applications in preoperative planning for epilepsy surgeries.

Delineating retinal breaks in ultra-widefield fundus images with a PraNet-based machine learning model

Takayama, T., Uto, T., Tsuge, T., Kondo, Y., Tampo, H., Chiba, M., Kaburaki, T., Yanagi, Y., Takahashi, H.

medrxiv logopreprintAug 5 2025
BackgroundRetinal breaks are critical lesions that can lead to retinal detachment and vision loss if not detected and treated early. Automated and precise delineation of retinal breaks using ultra- widefield fundus (UWF) images remain a significant challenge in ophthalmology. ObjectiveThis study aimed to develop and validate a deep learning model based on the PraNet architecture for the accurate delineation of retinal breaks in UWF images, with a particular focus on segmentation performance in retinal break-positive cases. MethodsWe developed a deep learning segmentation model based on the PraNet architecture. This study utilized a dataset consisting of 8,083 cases and a total of 34,867 UWF images. Of these, 960 images contained retinal breaks, while the remaining 33,907 images did not. The dataset was split into 34,713 images for training, 81 for validation, and 73 for testing. The model was trained and validated on this dataset. Model performance was evaluated using both image-wise segmentation metrics (accuracy, precision, recall, Intersection over Union (IoU), dice score, centroid distance score) and lesion-wise detection metrics (sensitivity, positive predictive value). ResultsThe PraNet-based model achieved an accuracy of 0.996, a precision of 0.635, a recall of 0.756, an IoU of 0.539, a dice score of 0.652, and a centroid distance score of 0.081 for pixel-level detection of retinal breaks. The lesion-wise sensitivity was calculated as 0.885, and the positive predictive value (PPV) was 0.742. ConclusionsTo our knowledge, this is the first study to present pixel-level localization of retinal breaks using deep learning on UWF images. Our findings demonstrate that the PraNet-based model provides precise and robust pixel-level segmentation of retinal breaks in UWF images. This approach offers a clinically applicable tool for the precise delineation of retinal breaks, with the potential to improve patient outcomes. Future work should focus on external validation across multiple institutions and integration of additional annotation strategies to further enhance model performance and generalizability.

Do Edges Matter? Investigating Edge-Enhanced Pre-Training for Medical Image Segmentation

Paul Zaha, Lars Böcking, Simeon Allmendinger, Leopold Müller, Niklas Kühl

arxiv logopreprintAug 4 2025
Medical image segmentation is crucial for disease diagnosis and treatment planning, yet developing robust segmentation models often requires substantial computational resources and large datasets. Existing research shows that pre-trained and finetuned foundation models can boost segmentation performance. However, questions remain about how particular image preprocessing steps may influence segmentation performance across different medical imaging modalities. In particular, edges-abrupt transitions in pixel intensity-are widely acknowledged as vital cues for object boundaries but have not been systematically examined in the pre-training of foundation models. We address this gap by investigating to which extend pre-training with data processed using computationally efficient edge kernels, such as kirsch, can improve cross-modality segmentation capabilities of a foundation model. Two versions of a foundation model are first trained on either raw or edge-enhanced data across multiple medical imaging modalities, then finetuned on selected raw subsets tailored to specific medical modalities. After systematic investigation using the medical domains Dermoscopy, Fundus, Mammography, Microscopy, OCT, US, and XRay, we discover both increased and reduced segmentation performance across modalities using edge-focused pre-training, indicating the need for a selective application of this approach. To guide such selective applications, we propose a meta-learning strategy. It uses standard deviation and image entropy of the raw image to choose between a model pre-trained on edge-enhanced or on raw data for optimal performance. Our experiments show that integrating this meta-learning layer yields an overall segmentation performance improvement across diverse medical imaging tasks by 16.42% compared to models pre-trained on edge-enhanced data only and 19.30% compared to models pre-trained on raw data only.

Glioblastoma Overall Survival Prediction With Vision Transformers

Yin Lin, Riccardo Barbieri, Domenico Aquino, Giuseppe Lauria, Marina Grisoli, Elena De Momi, Alberto Redaelli, Simona Ferrante

arxiv logopreprintAug 4 2025
Glioblastoma is one of the most aggressive and common brain tumors, with a median survival of 10-15 months. Predicting Overall Survival (OS) is critical for personalizing treatment strategies and aligning clinical decisions with patient outcomes. In this study, we propose a novel Artificial Intelligence (AI) approach for OS prediction using Magnetic Resonance Imaging (MRI) images, exploiting Vision Transformers (ViTs) to extract hidden features directly from MRI images, eliminating the need of tumor segmentation. Unlike traditional approaches, our method simplifies the workflow and reduces computational resource requirements. The proposed model was evaluated on the BRATS dataset, reaching an accuracy of 62.5% on the test set, comparable to the top-performing methods. Additionally, it demonstrated balanced performance across precision, recall, and F1 score, overcoming the best model in these metrics. The dataset size limits the generalization of the ViT which typically requires larger datasets compared to convolutional neural networks. This limitation in generalization is observed across all the cited studies. This work highlights the applicability of ViTs for downsampled medical imaging tasks and establishes a foundation for OS prediction models that are computationally efficient and do not rely on segmentation.

AI-Driven Integration of Deep Learning with Lung Imaging, Functional Analysis, and Blood Gas Metrics for Perioperative Hypoxemia Prediction: Progress and Perspectives.

Huang K, Wu C, Fang J, Pi R

pubmed logopapersAug 4 2025
This Perspective article explores the transformative role of artificial intelligence (AI) in predicting perioperative hypoxemia through the integration of deep learning (DL) with multimodal clinical data, including lung imaging, pulmonary function tests (PFTs), and arterial blood gas (ABG) analysis. Perioperative hypoxemia, defined as arterial oxygen partial pressure (PaO₂) <60 mmHg or oxygen saturation (SpO₂) <90%, poses significant risks of delayed recovery and organ dysfunction. Traditional diagnostic methods, such as radiological imaging and ABG analysis, often lack integrated predictive accuracy. AI frameworks, particularly convolutional neural networks (CNNs) and hybrid models like TD-CNNLSTM-LungNet, demonstrate exceptional performance in detecting pulmonary inflammation and stratifying hypoxemia risk, achieving up to 96.57% accuracy in pneumonia subtype differentiation and an AUC of 0.96 for postoperative hypoxemia prediction. Multimodal AI systems, such as DeepLung-Predict, unify CT scans, PFTs, and ABG parameters to enhance predictive precision, surpassing conventional methods by 22%. However, challenges persist, including dataset heterogeneity, model interpretability, and clinical workflow integration. Future directions emphasize multicenter validation, explainable AI (XAI) frameworks, and pragmatic trials to ensure equitable and reliable deployment. This AI-driven approach not only optimizes resource allocation but also mitigates financial burdens on healthcare systems by enabling early interventions and reducing ICU admission risks.

An integrated predictive model for Alzheimer's disease progression from cognitively normal subjects using generated MRI and interpretable AI.

Aghaei A, Moghaddam ME

pubmed logopapersAug 4 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer's disease from cognitively normal (CN) subjects. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer's disease.
Page 123 of 3543538 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.