Sort by:
Page 11 of 58574 results

Reconstruct or Generate: Exploring the Spectrum of Generative Modeling for Cardiac MRI

Niklas Bubeck, Yundi Zhang, Suprosanna Shit, Daniel Rueckert, Jiazhen Pan

arxiv logopreprintJul 25 2025
In medical imaging, generative models are increasingly relied upon for two distinct but equally critical tasks: reconstruction, where the goal is to restore medical imaging (usually inverse problems like inpainting or superresolution), and generation, where synthetic data is created to augment datasets or carry out counterfactual analysis. Despite shared architecture and learning frameworks, they prioritize different goals: generation seeks high perceptual quality and diversity, while reconstruction focuses on data fidelity and faithfulness. In this work, we introduce a "generative model zoo" and systematically analyze how modern latent diffusion models and autoregressive models navigate the reconstruction-generation spectrum. We benchmark a suite of generative models across representative cardiac medical imaging tasks, focusing on image inpainting with varying masking ratios and sampling strategies, as well as unconditional image generation. Our findings show that diffusion models offer superior perceptual quality for unconditional generation but tend to hallucinate as masking ratios increase, whereas autoregressive models maintain stable perceptual performance across masking levels, albeit with generally lower fidelity.

Carotid and femoral bifurcation plaques detected by ultrasound as predictors of cardiovascular events.

Blinc A, Nicolaides AN, Poredoš P, Paraskevas KI, Heiss C, Müller O, Rammos C, Stanek A, Jug B

pubmed logopapersJul 25 2025
<b></b>Risk factor-based algorithms give a good estimate of cardiovascular (CV) risk at the population level but are often inaccurate at the individual level. Detecting preclinical atherosclerotic plaques in the carotid and common femoral arterial bifurcations by ultrasound is a simple, non-invasive way of detecting atherosclerosis in the individual and thus more accurately estimating his/her risk of future CV events. The presence of plaques in these bifurcations is independently associated with increased risk of CV death and myocardial infarction, even after adjusting for traditional risk factors, while ultrasonographic characteristics of vulnerable plaque are mostly associated with increased risk for ipsilateral ischaemic stroke. The predictive value of carotid and femoral plaques for CV events increases in proportion to plaque burden and especially by plaque progression over time. Assessing the burden of carotid and/or common femoral bifurcation plaques enables reclassification of a significant number of individuals with low risk according risk factor-based algorithms into intermediate or high CV risk and intermediate risk individuals into the low- or high CV risk. Ongoing multimodality imaging studies, supplemented by clinical and genetic data, aided by machine learning/ artificial intelligence analysis are expected to advance our understanding of atherosclerosis progression from the asymptomatic into the symptomatic phase and personalize prevention.

Digitalizing English-language CT Interpretation for Positive Haemorrhage Evaluation Reporting: the DECIPHER study.

Bloom B, Haimovich A, Pott J, Williams SL, Cheetham M, Langsted S, Skene I, Astin-Chamberlain R, Thomas SH

pubmed logopapersJul 25 2025
Identifying whether there is a traumatic intracranial bleed (ICB+) on head CT is critical for clinical care and research. Free text CT reports are unstructured and therefore must undergo time-consuming manual review. Existing artificial intelligence classification schemes are not optimised for the emergency department endpoint of classification of ICB+ or ICB-. We sought to assess three methods for classifying CT reports: a text classification (TC) programme, a commercial natural language processing programme (Clinithink) and a generative pretrained transformer large language model (Digitalizing English-language CT Interpretation for Positive Haemorrhage Evaluation Reporting (DECIPHER)-LLM). Primary objective: determine the diagnostic classification performance of the dichotomous categorisation of each of the three approaches. determine whether the LLM could achieve a substantial reduction in CT report review workload while maintaining 100% sensitivity.Anonymised radiology reports of head CT scans performed for trauma were manually labelled as ICB+/-. Training and validation sets were randomly created to train the TC and natural language processing models. Prompts were written to train the LLM. 898 reports were manually labelled. Sensitivity and specificity (95% CI)) of TC, Clinithink and DECIPHER-LLM (with probability of ICB set at 10%) were respectively 87.9% (76.7% to 95.0%) and 98.2% (96.3% to 99.3%), 75.9% (62.8% to 86.1%) and 96.2% (93.8% to 97.8%) and 100% (93.8% to 100%) and 97.4% (95.3% to 98.8%).With DECIPHER-LLM probability of ICB+ threshold of 10% set to identify CT reports requiring manual evaluation, CT reports requiring manual classification reduced by an estimated 385/449 cases (85.7% (95% CI 82.1% to 88.9%)) while maintaining 100% sensitivity. DECIPHER-LLM outperformed other tested free-text classification methods.

DeepJIVE: Learning Joint and Individual Variation Explained from Multimodal Data Using Deep Learning

Matthew Drexler, Benjamin Risk, James J Lah, Suprateek Kundu, Deqiang Qiu

arxiv logopreprintJul 25 2025
Conventional multimodal data integration methods provide a comprehensive assessment of the shared or unique structure within each individual data type but suffer from several limitations such as the inability to handle high-dimensional data and identify nonlinear structures. In this paper, we introduce DeepJIVE, a deep-learning approach to performing Joint and Individual Variance Explained (JIVE). We perform mathematical derivation and experimental validations using both synthetic and real-world 1D, 2D, and 3D datasets. Different strategies of achieving the identity and orthogonality constraints for DeepJIVE were explored, resulting in three viable loss functions. We found that DeepJIVE can successfully uncover joint and individual variations of multimodal datasets. Our application of DeepJIVE to the Alzheimer's Disease Neuroimaging Initiative (ADNI) also identified biologically plausible covariation patterns between the amyloid positron emission tomography (PET) and magnetic resonance (MR) images. In conclusion, the proposed DeepJIVE can be a useful tool for multimodal data analysis.

Deep learning-based image classification for integrating pathology and radiology in AI-assisted medical imaging.

Lu C, Zhang J, Liu R

pubmed logopapersJul 25 2025
The integration of pathology and radiology in medical imaging has emerged as a critical need for advancing diagnostic accuracy and improving clinical workflows. Current AI-driven approaches for medical image analysis, despite significant progress, face several challenges, including handling multi-modal imaging, imbalanced datasets, and the lack of robust interpretability and uncertainty quantification. These limitations often hinder the deployment of AI systems in real-world clinical settings, where reliability and adaptability are essential. To address these issues, this study introduces a novel framework, the Domain-Informed Adaptive Network (DIANet), combined with an Adaptive Clinical Workflow Integration (ACWI) strategy. DIANet leverages multi-scale feature extraction, domain-specific priors, and Bayesian uncertainty modeling to enhance interpretability and robustness. The proposed model is tailored for multi-modal medical imaging tasks, integrating adaptive learning mechanisms to mitigate domain shifts and imbalanced datasets. Complementing the model, the ACWI strategy ensures seamless deployment through explainable AI (XAI) techniques, uncertainty-aware decision support, and modular workflow integration compatible with clinical systems like PACS. Experimental results demonstrate significant improvements in diagnostic accuracy, segmentation precision, and reconstruction fidelity across diverse imaging modalities, validating the potential of this framework to bridge the gap between AI innovation and clinical utility.

Current evidence of low-dose CT screening benefit.

Yip R, Mulshine JL, Oudkerk M, Field J, Silva M, Yankelevitz DF, Henschke CI

pubmed logopapersJul 25 2025
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to late-stage diagnosis. Low-dose computed tomography (LDCT) screening has emerged as a powerful tool for early detection, enabling diagnosis at curable stages and reducing lung cancer mortality. Despite strong evidence, LDCT screening uptake remains suboptimal globally. This review synthesizes current evidence supporting LDCT screening, highlights ongoing global implementation efforts, and discusses key insights from the 1st AGILE conference. Lung cancer screening is gaining global momentum, with many countries advancing plans for national LDCT programs. Expanding eligibility through risk-based models and targeting high-risk never- and light-smokers are emerging strategies to improve efficiency and equity. Technological advancements, including AI-assisted interpretation and image-based biomarkers, are addressing concerns around false positives, overdiagnosis, and workforce burden. Integrating cardiac and smoking-related disease assessment within LDCT screening offers added preventive health benefits. To maximize global impact, screening strategies must be tailored to local health systems and populations. Efforts should focus on increasing awareness, standardizing protocols, optimizing screening intervals, and strengthening multidisciplinary care pathways. International collaboration and shared infrastructure can accelerate progress and ensure sustainability. LDCT screening represents a cost-effective opportunity to reduce lung cancer mortality and premature deaths.

Agentic AI in radiology: Emerging Potential and Unresolved Challenges.

Dietrich N

pubmed logopapersJul 24 2025
This commentary introduces agentic artificial intelligence (AI) as an emerging paradigm in radiology, marking a shift from passive, user-triggered tools to systems capable of autonomous workflow management, task planning, and clinical decision support. Agentic AI models may dynamically prioritize imaging studies, tailor recommendations based on patient history and scan context, and automate administrative follow-up tasks, offering potential gains in efficiency, triage accuracy, and cognitive support. While not yet widely implemented, early pilot studies and proof-of-concept applications highlight promising utility across high-volume and high-acuity settings. Key barriers, including limited clinical validation, evolving regulatory frameworks, and integration challenges, must be addressed to ensure safe, scalable deployment. Agentic AI represents a forward-looking evolution in radiology that warrants careful development and clinician-guided implementation.

RealDeal: Enhancing Realism and Details in Brain Image Generation via Image-to-Image Diffusion Models

Shen Zhu, Yinzhu Jin, Tyler Spears, Ifrah Zawar, P. Thomas Fletcher

arxiv logopreprintJul 24 2025
We propose image-to-image diffusion models that are designed to enhance the realism and details of generated brain images by introducing sharp edges, fine textures, subtle anatomical features, and imaging noise. Generative models have been widely adopted in the biomedical domain, especially in image generation applications. Latent diffusion models achieve state-of-the-art results in generating brain MRIs. However, due to latent compression, generated images from these models are overly smooth, lacking fine anatomical structures and scan acquisition noise that are typically seen in real images. This work formulates the realism enhancing and detail adding process as image-to-image diffusion models, which refines the quality of LDM-generated images. We employ commonly used metrics like FID and LPIPS for image realism assessment. Furthermore, we introduce new metrics to demonstrate the realism of images generated by RealDeal in terms of image noise distribution, sharpness, and texture.

TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound

Pascal Spiegler, Taha Koleilat, Arash Harirpoush, Corey S. Miller, Hassan Rivaz, Marta Kersten-Oertel, Yiming Xiao

arxiv logopreprintJul 24 2025
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation. Our code will be publicly available upon acceptance.

Direct Dual-Energy CT Material Decomposition using Model-based Denoising Diffusion Model

Hang Xu, Alexandre Bousse, Alessandro Perelli

arxiv logopreprintJul 24 2025
Dual-energy X-ray Computed Tomography (DECT) constitutes an advanced technology which enables automatic decomposition of materials in clinical images without manual segmentation using the dependency of the X-ray linear attenuation with energy. However, most methods perform material decomposition in the image domain as a post-processing step after reconstruction but this procedure does not account for the beam-hardening effect and it results in sub-optimal results. In this work, we propose a deep learning procedure called Dual-Energy Decomposition Model-based Diffusion (DEcomp-MoD) for quantitative material decomposition which directly converts the DECT projection data into material images. The algorithm is based on incorporating the knowledge of the spectral DECT model into the deep learning training loss and combining a score-based denoising diffusion learned prior in the material image domain. Importantly the inference optimization loss takes as inputs directly the sinogram and converts to material images through a model-based conditional diffusion model which guarantees consistency of the results. We evaluate the performance with both quantitative and qualitative estimation of the proposed DEcomp-MoD method on synthetic DECT sinograms from the low-dose AAPM dataset. Finally, we show that DEcomp-MoD outperform state-of-the-art unsupervised score-based model and supervised deep learning networks, with the potential to be deployed for clinical diagnosis.
Page 11 of 58574 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.