Sort by:
Page 10 of 18173 results

Implementation costs and cost-effectiveness of ultraportable chest X-ray with artificial intelligence in active case finding for tuberculosis in Nigeria.

Garg T, John S, Abdulkarim S, Ahmed AD, Kirubi B, Rahman MT, Ubochioma E, Creswell J

pubmed logopapersJun 1 2025
Availability of ultraportable chest x-ray (CXR) and advancements in artificial intelligence (AI)-enabled CXR interpretation are promising developments in tuberculosis (TB) active case finding (ACF) but costing and cost-effectiveness analyses are limited. We provide implementation cost and cost-effectiveness estimates of different screening algorithms using symptoms, CXR and AI in Nigeria. People 15 years and older were screened for TB symptoms and offered a CXR with AI-enabled interpretation using qXR v3 (Qure.ai) at lung health camps. Sputum samples were tested on Xpert MTB/RIF for individuals reporting symptoms or with qXR abnormality scores ≥0.30. We conducted a retrospective costing using a combination of top-down and bottom-up approaches while utilizing itemized expense data from a health system perspective. We estimated costs in five screening scenarios: abnormality score ≥0.30 and ≥0.50; cough ≥ 2 weeks; any symptom; abnormality score ≥0.30 or any symptom. We calculated total implementation costs, cost per bacteriologically-confirmed case detected, and assessed cost-effectiveness using incremental cost-effectiveness ratio (ICER) as additional cost per additional case. Overall, 3205 people with presumptive TB were identified, 1021 were tested, and 85 people with bacteriologically-confirmed TB were detected. Abnormality ≥ 0.30 or any symptom (US$65704) had the highest costs while cough ≥ 2 weeks was the lowest (US$40740). The cost per case was US$1198 for cough ≥ 2 weeks, and lowest for any symptom (US$635). Compared to baseline strategy of cough ≥ 2 weeks, the ICER for any symptom was US$191 per additional case detected and US$ 2096 for Abnormality ≥0.30 OR any symptom algorithm. Using CXR and AI had lower cost per case detected than any symptom screening criteria when asymptomatic TB was higher than 30% of all bacteriologically-confirmed TB detected. Compared to traditional symptom screening, using CXR and AI in combination with symptoms detects more cases at lower cost per case detected and is cost-effective. TB programs should explore adoption of CXR and AI for screening in ACF.

Diagnostic Performance of ChatGPT-4o in Detecting Hip Fractures on Pelvic X-rays.

Erdem TE, Kirilmaz A, Kekec AF

pubmed logopapersJun 1 2025
Hip fractures are a major orthopedic problem, especially in the elderly population. Hip fractures are usually diagnosed by clinical evaluation and imaging, especially X-rays. In recent years, new approaches to fracture detection have emerged with the use of artificial intelligence (AI) and deep learning techniques in medical imaging. In this study, we aimed to evaluate the diagnostic performance of ChatGPT-4o, an artificial intelligence model, in diagnosing hip fractures. A total of 200 anteroposterior pelvic X-ray images were retrospectively analyzed. Half of the images belonged to patients with surgically confirmed hip fractures, including both displaced and non-displaced types, while the other half represented patients with soft tissue trauma and no fractures. Each image was evaluated by ChatGPT-4o through a standardized prompt, and its predictions (fracture vs. no fracture) were compared against the gold standard diagnoses. Diagnostic performance metrics such as sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), receiver operating characteristic (ROC) curve, Cohen's kappa, and F1 score were calculated. ChatGPT-4o demonstrated an overall accuracy of 82.5% in detecting hip fractures on pelvic radiographs, with a sensitivity of 78.0% and specificity of 87.0%. PPVs and NPVs were 85.7% and 79.8%, respectively. The area under the ROC curve (AUC) was 0.825, indicating good discriminative performance. Among 22 false-negative cases, 68.2% were non-displaced fractures, suggesting the model had greater difficulty identifying subtle radiographic findings. Cohen's kappa coefficient was 0.65, showing substantial agreement with actual diagnoses. Chi-square analysis revealed a strong correlation (χ² = 82.59, <i>P</i> < 0.001), while McNemar's test (<i>P</i> = 0.176) showed no significant asymmetry in error distribution. ChatGPT-4o shows promising accuracy in identifying hip fractures on pelvic X-rays, especially when fractures are displaced. However, its sensitivity drops significantly for non-displaced fractures, leading to many false negatives. This highlights the need for caution when interpreting negative AI results, particularly when clinical suspicion remains high. While not a replacement for expert assessment, ChatGPT-4o may assist in settings with limited specialist access.

LiDSCUNet++: A lightweight depth separable convolutional UNet++ for vertebral column segmentation and spondylosis detection.

Agrawal KK, Kumar G

pubmed logopapersMay 31 2025
Accurate computer-aided diagnosis systems rely on precise segmentation of the vertebral column to assist physicians in diagnosing various disorders. However, segmenting spinal disks and bones becomes challenging in the presence of abnormalities and complex anatomical structures. While Deep Convolutional Neural Networks (DCNNs) achieve remarkable results in medical image segmentation, their performance is limited by data insufficiency and the high computational complexity of existing solutions. This paper introduces LiDSCUNet++, a lightweight deep learning framework based on depthwise-separable and pointwise convolutions integrated with UNet++ for vertebral column segmentation. The model segments vertebral anomalies from dog radiographs, and the results are further processed by YOLOv8 for automated detection of Spondylosis Deformans. LiDSCUNet++ delivers comparable segmentation performance while significantly reducing trainable parameters, memory usage, energy consumption, and computational time, making it an efficient and practical solution for medical image analysis.

Development and interpretation of a pathomics-based model for the prediction of immune therapy response in colorectal cancer.

Luo Y, Tian Q, Xu L, Zeng D, Zhang H, Zeng T, Tang H, Wang C, Chen Y

pubmed logopapersMay 31 2025
Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of cancer-related deaths worldwide, with a 5-year survival rate below 20 %. Immunotherapy, particularly immune checkpoint blockade (ICB)-based therapies, has become an important approach for CRC treatment. However, only specific patient subsets demonstrate significant clinical benefits. Although the TIDE algorithm can predict immunotherapy responses, the reliance on transcriptome sequencing data limits its clinical applicability. Recent advances in artificial intelligence and computational pathology provide new avenues for medical image analysis.In this study, we classified TCGA-CRC samples into immunotherapy responder and non-responder groups using the TIDE algorithm. Further, a pathomics model based on convolutional neural networks was constructed to directly predict immunotherapy responses from histopathological images. Single-cell analysis revealed that fibroblasts may induce immunotherapy resistance in CRC through collagen-CD44 and ITGA1 + ITGB1 signaling axes. The developed pathomics model demonstrated excellent classification performance in the test set, with an AUC of 0.88 at the patch level and 0.85 at the patient level. Moreover, key pathomics features were identified through SHAP analysis. This innovative predictive tool provides a novel method for clinical decision-making in CRC immunotherapy, with potential to optimize treatment strategies and advance precision medicine.

HVAngleEst: A Dataset for End-to-end Automated Hallux Valgus Angle Measurement from X-Ray Images.

Wang Q, Ji D, Wang J, Liu L, Yang X, Zhang Y, Liang J, Liu P, Zhao H

pubmed logopapersMay 30 2025
Accurate measurement of hallux valgus angle (HVA) and intermetatarsal angle (IMA) is essential for diagnosing hallux valgus and determining appropriate treatment strategies. Traditional manual measurement methods, while standardized, are time-consuming, labor-intensive, and subject to evaluator bias. Recent advancements in deep learning have been applied to hallux valgus angle estimation, but the development of effective algorithms requires large, well-annotated datasets. Existing X-ray datasets are typically limited to cropped foot regions images, and only one dataset containing very few samples is publicly available. To address these challenges, we introduce HVAngleEst, the first large-scale, open-access dataset specifically designed for hallux valgus angle estimation. HVAngleEst comprises 1,382 X-ray images from 1,150 patients and includes comprehensive annotations, such as foot localization, hallux valgus angles, and line segments for each phalanx. This dataset enables fully automated, end-to-end hallux valgus angle estimation, reducing manual labor and eliminating evaluator bias.

A conditional point cloud diffusion model for deformable liver motion tracking via a single arbitrarily-angled x-ray projection.

Xie J, Shao HC, Li Y, Yan S, Shen C, Wang J, Zhang Y

pubmed logopapersMay 30 2025
Deformable liver motion tracking using a single X-ray projection enables real-time motion monitoring and treatment intervention. We introduce a conditional point cloud diffusion model-based framework for accurate and robust liver motion tracking from arbitrarily angled single X-ray projections. We propose a conditional point cloud diffusion model for liver motion tracking (PCD-Liver), which estimates volumetric liver motion by solving deformable vector fields (DVFs) of a prior liver surface point cloud, based on a single X-ray image. It is a patient-specific model of two main components: a rigid alignment model to estimate the liver's overall shifts, and a conditional point cloud diffusion model that further corrects for the liver surface's deformation. Conditioned on the motion-encoded features extracted from a single X-ray projection by a geometry-informed feature pooling layer, the diffusion model iteratively solves detailed liver surface DVFs in a projection angle-agnostic fashion. The liver surface motion solved by PCD-Liver is subsequently fed as the boundary condition into a UNet-based biomechanical model to infer the liver's internal motion to localize liver tumors. A dataset of 10 liver cancer patients was used for evaluation. We used the root mean square error (RMSE) and 95-percentile Hausdorff distance (HD95) metrics to examine the liver point cloud motion estimation accuracy, and the center-of-mass error (COME) to quantify the liver tumor localization error. The mean (±s.d.) RMSE, HD95, and COME of the prior liver or tumor before motion estimation were 8.82 mm (±3.58 mm), 10.84 mm (±4.55 mm), and 9.72 mm (±4.34 mm), respectively. After PCD-Liver's motion estimation, the corresponding values were 3.63 mm (±1.88 mm), 4.29 mm (±1.75 mm), and 3.46 mm (±2.15 mm). Under highly noisy conditions, PCD-Liver maintained stable performance. This study presents an accurate and robust framework for liver deformable motion estimation and tumor localization for image-guided radiotherapy.

Exploring best-performing radiomic features with combined multilevel discrete wavelet decompositions for multiclass COVID-19 classification using chest X-ray images.

Özcan H

pubmed logopapersMay 29 2025
Discrete wavelet transforms have been applied in many machine learning models for the analysis of COVID-19; however, little is known about the impact of combined multilevel wavelet decompositions for the disease identification. This study proposes a computer-aided diagnosis system for addressing the combined multilevel effects of multiscale radiomic features on multiclass COVID-19 classification using chest X-ray images. A two-level discrete wavelet transform was applied to an optimal region of interest to obtain multiscale decompositions. Both approximation and detail coefficients were extensively investigated in varying frequency bands through 1240 experimental models. High dimensionality in the feature space was managed using a proposed filter- and wrapper-based feature selection approach. A comprehensive comparison was conducted between the bands and features to explore best-performing ensemble algorithm models. The results indicated that incorporating multilevel decompositions could lead to improved model performance. An inclusive region of interest, encompassing both lungs and the mediastinal regions, was identified to enhance feature representation. The light gradient-boosting machine, applied on combined bands with the features of basic, gray-level, Gabor, histogram of oriented gradients and local binary patterns, achieved the highest weighted precision, sensitivity, specificity, and accuracy of 97.50 %, 97.50 %, 98.75 %, and 97.50 %, respectively. The COVID-19-versus-the-rest receiver operating characteristic area under the curve was 0.9979. These results underscore the potential of combining decomposition levels with the original signals and employing an inclusive region of interest for effective COVID-19 detection, while the feature selection and training processes remain efficient within a practical computational time.

Diagnosis of trigeminal neuralgia based on plain skull radiography using convolutional neural network.

Han JH, Ji SY, Kim M, Kwon JE, Park JB, Kang H, Hwang K, Kim CY, Kim T, Jeong HG, Ahn YH, Chung HT

pubmed logopapersMay 29 2025
This study aimed to determine whether trigeminal neuralgia can be diagnosed using convolutional neural networks (CNNs) based on plain X-ray skull images. A labeled dataset of 166 skull images from patients aged over 16 years with trigeminal neuralgia was compiled, alongside a control dataset of 498 images from patients with unruptured intracranial aneurysms. The images were randomly partitioned into training, validation, and test datasets in a 6:2:2 ratio. Classifier performance was assessed using accuracy and the area under the receiver operating characteristic (AUROC) curve. Gradient-weighted class activation mapping was applied to identify regions of interest. External validation was conducted using a dataset obtained from another institution. The CNN achieved an overall accuracy of 87.2%, with sensitivity and specificity of 0.72 and 0.91, respectively, and an AUROC of 0.90 on the test dataset. In most cases, the sphenoid body and clivus were identified as key areas for predicting trigeminal neuralgia. Validation on the external dataset yielded an accuracy of 71.0%, highlighting the potential of deep learning-based models in distinguishing X-ray skull images of patients with trigeminal neuralgia from those of control individuals. Our preliminary results suggest that plain x-ray can be potentially used as an adjunct to conventional MRI, ideally with CISS sequences, to aid in the clinical diagnosis of TN. Further refinement could establish this approach as a valuable screening tool.

Interpreting Chest X-rays Like a Radiologist: A Benchmark with Clinical Reasoning

Jinquan Guan, Qi Chen, Lizhou Liang, Yuhang Liu, Vu Minh Hieu Phan, Minh-Son To, Jian Chen, Yutong Xie

arxiv logopreprintMay 29 2025
Artificial intelligence (AI)-based chest X-ray (CXR) interpretation assistants have demonstrated significant progress and are increasingly being applied in clinical settings. However, contemporary medical AI models often adhere to a simplistic input-to-output paradigm, directly processing an image and an instruction to generate a result, where the instructions may be integral to the model's architecture. This approach overlooks the modeling of the inherent diagnostic reasoning in chest X-ray interpretation. Such reasoning is typically sequential, where each interpretive stage considers the images, the current task, and the contextual information from previous stages. This oversight leads to several shortcomings, including misalignment with clinical scenarios, contextless reasoning, and untraceable errors. To fill this gap, we construct CXRTrek, a new multi-stage visual question answering (VQA) dataset for CXR interpretation. The dataset is designed to explicitly simulate the diagnostic reasoning process employed by radiologists in real-world clinical settings for the first time. CXRTrek covers 8 sequential diagnostic stages, comprising 428,966 samples and over 11 million question-answer (Q&A) pairs, with an average of 26.29 Q&A pairs per sample. Building on the CXRTrek dataset, we propose a new vision-language large model (VLLM), CXRTrekNet, specifically designed to incorporate the clinical reasoning flow into the VLLM framework. CXRTrekNet effectively models the dependencies between diagnostic stages and captures reasoning patterns within the radiological context. Trained on our dataset, the model consistently outperforms existing medical VLLMs on the CXRTrek benchmarks and demonstrates superior generalization across multiple tasks on five diverse external datasets. The dataset and model can be found in our repository (https://github.com/guanjinquan/CXRTrek).

DeepChest: Dynamic Gradient-Free Task Weighting for Effective Multi-Task Learning in Chest X-ray Classification

Youssef Mohamed, Noran Mohamed, Khaled Abouhashad, Feilong Tang, Sara Atito, Shoaib Jameel, Imran Razzak, Ahmed B. Zaky

arxiv logopreprintMay 29 2025
While Multi-Task Learning (MTL) offers inherent advantages in complex domains such as medical imaging by enabling shared representation learning, effectively balancing task contributions remains a significant challenge. This paper addresses this critical issue by introducing DeepChest, a novel, computationally efficient and effective dynamic task-weighting framework specifically designed for multi-label chest X-ray (CXR) classification. Unlike existing heuristic or gradient-based methods that often incur substantial overhead, DeepChest leverages a performance-driven weighting mechanism based on effective analysis of task-specific loss trends. Given a network architecture (e.g., ResNet18), our model-agnostic approach adaptively adjusts task importance without requiring gradient access, thereby significantly reducing memory usage and achieving a threefold increase in training speed. It can be easily applied to improve various state-of-the-art methods. Extensive experiments on a large-scale CXR dataset demonstrate that DeepChest not only outperforms state-of-the-art MTL methods by 7% in overall accuracy but also yields substantial reductions in individual task losses, indicating improved generalization and effective mitigation of negative transfer. The efficiency and performance gains of DeepChest pave the way for more practical and robust deployment of deep learning in critical medical diagnostic applications. The code is publicly available at https://github.com/youssefkhalil320/DeepChest-MTL
Page 10 of 18173 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.