Diagnostic value of artificial intelligence-based software for the detection of pediatric upper extremity fractures.
Authors
Affiliations (3)
Affiliations (3)
- Department of Radiology, Pediatric Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin.
- Department of Radiology, Caritas Gesundheit Berlin, Berlin, Germany.
- Department of Radiology, Pediatric Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, . [email protected].
Abstract
Fractures in children are common in emergency care, and accurate diagnosis is crucial to avoid complications affecting skeletal development. Limited access to pediatric radiology specialists emphasizes the potential of artificial intelligence (AI)-based diagnostic tools. This study evaluates the performance of the AI software BoneView® for detecting fractures of the upper extremity in children aged 2-18 years. A retrospective analysis was conducted using radiographic data from 826 pediatric patients presenting to the university's pediatric emergency department. Independent assessments by two experienced pediatric radiologists served as reference standard. The diagnostic accuracy of the AI tool compared to the reference standard was evaluated and performance parameters, e.g., sensitivity, specificity, positive and negative predictive values were calculated. The AI tool achieved an overall sensitivity of 89% and specificity of 91% for detecting fractures of the upper extremities. Significantly poorer performance compared to the reference standard was observed for the shoulder, elbow, hand, and fingers, while no significant difference was found for the wrist, clavicle, upper arm, and forearm. The software performed best for wrist fractures (sensitivity: 96%; specificity: 94%) and worst for elbow fractures (sensitivity: 87%; specificity: 65%). The software assessed provides diagnostic support in pediatric emergency radiology. While its overall performance is robust, limitations in specific anatomical regions underscore the need for further training of the underlying algorithms. The results suggest that AI can complement clinical expertise but should not replace radiological assessment. Question There is no comprehensive analysis of an AI-based tool for the diagnosis of pediatric fractures focusing on the upper extremities. Findings The AI-based software demonstrated solid overall diagnostic accuracy in the detection of upper limb fractures in children, with performance differing by anatomical region. Clinical relevance AI-based fracture detection can support pediatric emergency radiology, especially where expert interpretation is limited. However, further algorithm training is needed for certain anatomical regions and for detecting associated findings such as joint effusions to maximize clinical benefit.