Sort by:
Page 1 of 657 results
Next

Artificial intelligence in medical imaging diagnosis: are we ready for its clinical implementation?

Ramos-Soto O, Aranguren I, Carrillo M M, Oliva D, Balderas-Mata SE

pubmed logopapersNov 1 2025
We examine the transformative potential of artificial intelligence (AI) in medical imaging diagnosis, focusing on improving diagnostic accuracy and efficiency through advanced algorithms. It addresses the significant challenges preventing immediate clinical adoption of AI, specifically from technical, ethical, and legal perspectives. The aim is to highlight the current state of AI in medical imaging and outline the necessary steps to ensure safe, effective, and ethically sound clinical implementation. We conduct a comprehensive discussion, with special emphasis on the technical requirements for robust AI models, the ethical frameworks needed for responsible deployment, and the legal implications, including data privacy and regulatory compliance. Explainable artificial intelligence (XAI) is examined as a means to increase transparency and build trust among healthcare professionals and patients. The analysis reveals key challenges to AI integration in clinical settings, including the need for extensive high-quality datasets, model reliability, advanced infrastructure, and compliance with regulatory standards. The lack of explainability in AI outputs remains a barrier, with XAI identified as crucial for meeting transparency standards and enhancing trust among end users. Overcoming these barriers requires a collaborative, multidisciplinary approach to integrate AI into clinical practice responsibly. Addressing technical, ethical, and legal issues will support a softer transition, fostering a more accurate, efficient, and patient-centered healthcare system where AI augments traditional medical practices.

Diagnostic tools in respiratory medicine (Review).

Georgakopoulou VE, Spandidos DA, Corlateanu A

pubmed logopapersJul 1 2025
Recent advancements in diagnostic technologies have significantly transformed the landscape of respiratory medicine, aiming for early detection, improved specificity and personalized therapeutic strategies. Innovations in imaging such as multi-slice computed tomography (CT) scanners, high-resolution CT and magnetic resonance imaging (MRI) have revolutionized our ability to visualize and assess the structural and functional aspects of the respiratory system. These techniques are complemented by breakthroughs in molecular biology that have identified specific biomarkers and genetic determinants of respiratory diseases, enabling targeted diagnostic approaches. Additionally, functional tests including spirometry and exercise testing continue to provide valuable insights into pulmonary function and capacity. The integration of artificial intelligence is poised to further refine these diagnostic tools, enhancing their accuracy and efficiency. The present narrative review explores these developments and their impact on the management and outcomes of respiratory conditions, underscoring the ongoing shift towards more precise and less invasive diagnostic modalities in respiratory medicine.

Adoption of artificial intelligence in healthcare: survey of health system priorities, successes, and challenges.

Poon EG, Lemak CH, Rojas JC, Guptill J, Classen D

pubmed logopapersJul 1 2025
The US healthcare system faces significant challenges, including clinician burnout, operational inefficiencies, and concerns about patient safety. Artificial intelligence (AI), particularly generative AI, has the potential to address these challenges, but its adoption, effectiveness, and barriers to implementation are not well understood. To evaluate the current state of AI adoption in US healthcare systems, assess successes and barriers to implementation during the early generative AI era. This cross-sectional survey was conducted in Fall 2024, and included 67 health systems members of the Scottsdale Institute, a collaborative of US non-profit healthcare organizations. Forty-three health systems completed the survey (64% response rate). Respondents provided data on the deployment status and perceived success of 37 AI use cases across 10 categories. The primary outcomes were the extent of AI use case development, piloting, or deployment, the degree of reported success for AI use cases, and the most significant barriers to adoption. Across the 43 responding health systems, AI adoption and perceptions of success varied significantly. Ambient Notes, a generative AI tool for clinical documentation, was the only use case with 100% of respondents reporting adoption activities, and 53% reported a high degree of success with using AI for Clinical Documentation. Imaging and radiology emerged as the most widely deployed clinical AI use case, with 90% of organizations reporting at least partial deployment, although successes with diagnostic use cases were limited. Similarly, many organizations have deployed AI for clinical risk stratification such as early sepsis detection, but only 38% report high success in this area. Immature AI tools were identified a significant barrier to adoption, cited by 77% of respondents, followed by financial concerns (47%) and regulatory uncertainty (40%). Ambient Notes is rapidly advancing in US healthcare systems and demonstrating early success. Other AI use cases show varying degrees of adoption and success, constrained by barriers such as immature AI tools, financial concerns, and regulatory uncertainty. Addressing these challenges through robust evaluations, shared strategies, and governance models will be essential to ensure effective integration and adoption of AI into healthcare practice.

Federated Learning in radiomics: A comprehensive meta-survey on medical image analysis.

Raza A, Guzzo A, Ianni M, Lappano R, Zanolini A, Maggiolini M, Fortino G

pubmed logopapersJul 1 2025
Federated Learning (FL) has emerged as a promising approach for collaborative medical image analysis while preserving data privacy, making it particularly suitable for radiomics tasks. This paper presents a systematic meta-analysis of recent surveys on Federated Learning in Medical Imaging (FL-MI), published in reputable venues over the past five years. We adopt the PRISMA methodology, categorizing and analyzing the existing body of research in FL-MI. Our analysis identifies common trends, challenges, and emerging strategies for implementing FL in medical imaging, including handling data heterogeneity, privacy concerns, and model performance in non-IID settings. The paper also highlights the most widely used datasets and a comparison of adopted machine learning models. Moreover, we examine FL frameworks in FL-MI applications, such as tumor detection, organ segmentation, and disease classification. We identify several research gaps, including the need for more robust privacy protection. Our findings provide a comprehensive overview of the current state of FL-MI and offer valuable directions for future research and development in this rapidly evolving field.

Practical applications of AI in body imaging.

Mervak BM, Fried JG, Neshewat J, Wasnik AP

pubmed logopapersJun 27 2025
Artificial intelligence (AI) algorithms and deep learning continue to change the landscape of radiology. New algorithms promise to enhance diagnostic accuracy, improve workflow efficiency, and automate repetitive tasks. This article provides a narrative review of the FDA-cleared AI algorithms which are commercially available in the United States as of late 2024 and targeted toward assessment of abdominopelvic organs and related diseases, evaluates potential advantages of using AI, and suggests future directions for the field.

Artificial intelligence in coronary CT angiography: transforming the diagnosis and risk stratification of atherosclerosis.

Irannejad K, Mafi M, Krishnan S, Budoff MJ

pubmed logopapersJun 27 2025
Coronary CT Angiography (CCTA) is essential for assessing atherosclerosis and coronary artery disease, aiding in early detection, risk prediction, and clinical assessment. However, traditional CCTA interpretation is limited by observer variability, time inefficiency, and inconsistent plaque characterization. AI has emerged as a transformative tool, enhancing diagnostic accuracy, workflow efficiency, and risk prediction for major adverse cardiovascular events (MACE). Studies show that AI improves stenosis detection by 27%, inter-reader agreement by 30%, and reduces reporting times by 40%, thereby addressing key limitations of manual interpretation. Integrating AI with multimodal imaging (e.g., FFR-CT, PET-CT) further enhances ischemia detection by 28% and lesion classification by 35%, providing a more comprehensive cardiovascular evaluation. This review synthesizes recent advancements in CCTA-AI automation, risk stratification, and precision diagnostics while critically analyzing data quality, generalizability, ethics, and regulation challenges. Future directions, including real-time AI-assisted triage, cloud-based diagnostics, and AI-driven personalized medicine, are explored for their potential to revolutionize clinical workflows and optimize patient outcomes.

AI Model Passport: Data and System Traceability Framework for Transparent AI in Health

Varvara Kalokyri, Nikolaos S. Tachos, Charalampos N. Kalantzopoulos, Stelios Sfakianakis, Haridimos Kondylakis, Dimitrios I. Zaridis, Sara Colantonio, Daniele Regge, Nikolaos Papanikolaou, The ProCAncer-I consortium, Konstantinos Marias, Dimitrios I. Fotiadis, Manolis Tsiknakis

arxiv logopreprintJun 27 2025
The increasing integration of Artificial Intelligence (AI) into health and biomedical systems necessitates robust frameworks for transparency, accountability, and ethical compliance. Existing frameworks often rely on human-readable, manual documentation which limits scalability, comparability, and machine interpretability across projects and platforms. They also fail to provide a unique, verifiable identity for AI models to ensure their provenance and authenticity across systems and use cases, limiting reproducibility and stakeholder trust. This paper introduces the concept of the AI Model Passport, a structured and standardized documentation framework that acts as a digital identity and verification tool for AI models. It captures essential metadata to uniquely identify, verify, trace and monitor AI models across their lifecycle - from data acquisition and preprocessing to model design, development and deployment. In addition, an implementation of this framework is presented through AIPassport, an MLOps tool developed within the ProCAncer-I EU project for medical imaging applications. AIPassport automates metadata collection, ensures proper versioning, decouples results from source scripts, and integrates with various development environments. Its effectiveness is showcased through a lesion segmentation use case using data from the ProCAncer-I dataset, illustrating how the AI Model Passport enhances transparency, reproducibility, and regulatory readiness while reducing manual effort. This approach aims to set a new standard for fostering trust and accountability in AI-driven healthcare solutions, aspiring to serve as the basis for developing transparent and regulation compliant AI systems across domains.

Leadership in radiology in the era of technological advancements and artificial intelligence.

Wichtmann BD, Paech D, Pianykh OS, Huang SY, Seltzer SE, Brink J, Fennessy FM

pubmed logopapersJun 27 2025
Radiology has evolved from the pioneering days of X-ray imaging to a field rich in advanced technologies on the cusp of a transformative future driven by artificial intelligence (AI). As imaging workloads grow in volume and complexity, and economic as well as environmental pressures intensify, visionary leadership is needed to navigate the unprecedented challenges and opportunities ahead. Leveraging its strengths in automation, accuracy and objectivity, AI will profoundly impact all aspects of radiology practice-from workflow management, to imaging, diagnostics, reporting and data-driven analytics-freeing radiologists to focus on value-driven tasks that improve patient care. However, successful AI integration requires strong leadership and robust governance structures to oversee algorithm evaluation, deployment, and ongoing maintenance, steering the transition from static to continuous learning systems. The vision of a "diagnostic cockpit" that integrates multidimensional data for quantitative precision diagnoses depends on visionary leadership that fosters innovation and interdisciplinary collaboration. Through administrative automation, precision medicine, and predictive analytics, AI can enhance operational efficiency, reduce administrative burden, and optimize resource allocation, leading to substantial cost reductions. Leaders need to understand not only the technical aspects but also the complex human, administrative, and organizational challenges of AI's implementation. Establishing sound governance and organizational frameworks will be essential to ensure ethical compliance and appropriate oversight of AI algorithms. As radiology advances toward this AI-driven future, leaders must cultivate an environment where technology enhances rather than replaces human skills, upholding an unwavering commitment to human-centered care. Their vision will define radiology's pioneering role in AI-enabled healthcare transformation. KEY POINTS: Question Artificial intelligence (AI) will transform radiology, improving workflow efficiency, reducing administrative burden, and optimizing resource allocation to meet imaging workloads' increasing complexity and volume. Findings Strong leadership and governance ensure ethical deployment of AI, steering the transition from static to continuous learning systems while fostering interdisciplinary innovation and collaboration. Clinical relevance Visionary leaders must harness AI to enhance, rather than replace, the role of professionals in radiology, advancing human-centered care while pioneering healthcare transformation.

[The analysis of invention patents in the field of artificial intelligent medical devices].

Zhang T, Chen J, Lu Y, Xu D, Yan S, Ouyang Z

pubmed logopapersJun 25 2025
The emergence of new-generation artificial intelligence technology has brought numerous innovations to the healthcare field, including telemedicine and intelligent care. However, the artificial intelligent medical device sector still faces significant challenges, such as data privacy protection and algorithm reliability. This study, based on invention patent analysis, revealed the technological innovation trends in the field of artificial intelligent medical devices from aspects such as patent application time trends, hot topics, regional distribution, and innovation players. The results showed that global invention patent applications had remained active, with technological innovations primarily focused on medical image processing, physiological signal processing, surgical robots, brain-computer interfaces, and intelligent physiological parameter monitoring technologies. The United States and China led the world in the number of invention patent applications. Major international medical device giants, such as Philips, Siemens, General Electric, and Medtronic, were at the forefront of global technological innovation, with significant advantages in patent application volumes and international market presence. Chinese universities and research institutes, such as Zhejiang University, Tianjin University, and the Shenzhen Institute of Advanced Technology, had demonstrated notable technological innovation, with a relatively high number of patent applications. However, their overseas market expansion remained limited. This study provides a comprehensive overview of the technological innovation trends in the artificial intelligent medical device field and offers valuable information support for industry development from an informatics perspective.

[Analysis of the global competitive landscape in artificial intelligence medical device research].

Chen J, Pan L, Long J, Yang N, Liu F, Lu Y, Ouyang Z

pubmed logopapersJun 25 2025
The objective of this study is to map the global scientific competitive landscape in the field of artificial intelligence (AI) medical devices using scientific data. A bibliometric analysis was conducted using the Web of Science Core Collection to examine global research trends in AI-based medical devices. As of the end of 2023, a total of 55 147 relevant publications were identified worldwide, with 76.6% published between 2018 and 2024. Research in this field has primarily focused on AI-assisted medical image and physiological signal analysis. At the national level, China (17 991 publications) and the United States (14 032 publications) lead in output. China has shown a rapid increase in publication volume, with its 2023 output exceeding twice that of the U.S.; however, the U.S. maintains a higher average citation per paper (China: 16.29; U.S.: 35.99). At the institutional level, seven Chinese institutions and three U.S. institutions rank among the global top ten in terms of publication volume. At the researcher level, prominent contributors include Acharya U Rajendra, Rueckert Daniel and Tian Jie, who have extensively explored AI-assisted medical imaging. Some researchers have specialized in specific imaging applications, such as Yang Xiaofeng (AI-assisted precision radiotherapy for tumors) and Shen Dinggang (brain imaging analysis). Others, including Gao Xiaorong and Ming Dong, focus on AI-assisted physiological signal analysis. The results confirm the rapid global development of AI in the medical device field, with "AI + imaging" emerging as the most mature direction. China and the U.S. maintain absolute leadership in this area-China slightly leads in publication volume, while the U.S., having started earlier, demonstrates higher research quality. Both countries host a large number of active research teams in this domain.
Page 1 of 657 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.